Study on Noetherian Local Rings in Commutative Algebra
交换代数中诺特局部环的研究
基本信息
- 批准号:16540047
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Construction of Big Cohen-Macaulay Modules and its applications :Around 1970, H.Bass and M.Auslander et al. asked several problems on finitely generated modules over Noetherian local rings, known as Homological Conjectures. Because these questions are basic and important, they attracted many researchers in this field.In 1973, C.Peskine-L.Szpiro showed that intersection conjecture on complexes of finitely generated free-modules over Noetherina local rings implies the problems above. And they solved the intersection conjecture for Noetherian local rings which contain fields of positive characteristic.Soon after, M.Hochster remarked that the existence of Big Cohen-Macaulay Modules gives so-called monomial conjecture, direct-summand conjecture and new intersection conjecture, which induces Peskine-Szpiro's intersection conjecture. He showed that Noetherian local rings of equal characteristic have Big Cohen-Macaulay Modules, using Frobenius trick and M.Artin's approximation theorem.Since then, almost all commutative algebraists have tried to construct Big Cohen-Macaulay Modules over Noetherian local rings of unequal characteristics.We are studying the question above by using the structure theorem of completer local rings, Witt expression, Bertini theorem of Flenner, Jacobian criteria and generalized Frobenius map. Thanks to monomial conjecture for Noetherian local rings of equal characteristic, we are showing the existence of Big Cohen-Macaulay Modules over Noetherian local rings of unequal characteristics.
大Cohen-Macaulay模的构造及其应用:1970年前后,H.Bass和M.Auslander等人提出了关于Noetherian局部环上有限生成模的几个问题,称为同调猜想。因为这些问题是基础的和重要的,它们吸引了许多研究者在这个领域。1973年,c.p eskin - l。Szpiro证明了Noetherina局部环上有限生成自由模复合体上的交猜想暗示了上述问题。并求解了包含正特征域的noether局部环的交猜想。不久后,M.Hochster指出大Cohen-Macaulay模的存在给出了所谓的单项式猜想、直接和猜想和新交点猜想,由此引出了peskin - szpiro交点猜想。他利用Frobenius技巧和M.Artin的近似定理证明了等特征的noether局部环具有大Cohen-Macaulay模。从那时起,几乎所有交换代数学者都试图在不等特征的noether局部环上构造大Cohen-Macaulay模。我们利用完备局部环的结构定理、Witt表达式、Flenner的Bertini定理、Jacobian准则和广义Frobenius映射来研究上述问题。利用等特征noether局部环的单项式猜想,证明了不等特征noether局部环上大Cohen-Macaulay模的存在性。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The structure theorem of complete local rings and its application
完备局部环的结构定理及其应用
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Goto;S.lai;T.Tomaru;都丸 正;Mitsuhiro Miyazaki;Mitsuhiro Miyazaki;Jun-ichi Nishimura
- 通讯作者:Jun-ichi Nishimura
Generic alternating matrices
通用交替矩阵
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:T.Fukuda;K.Komatsu;Mitsuhiro Miyazaki
- 通讯作者:Mitsuhiro Miyazaki
Polarizations and deformation
极化和变形
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.Goto;S.lai;T.Tomaru;都丸 正;Mitsuhiro Miyazaki
- 通讯作者:Mitsuhiro Miyazaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIMURA Jun-ichi其他文献
NISHIMURA Jun-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIMURA Jun-ichi', 18)}}的其他基金
Investigation of eculizumab therapeutic response to patients with PNH
依库丽单抗对 PNH 患者的治疗反应研究
- 批准号:
26461447 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Noetherian local rings in commutative algebra
交换代数中诺特局部环的研究
- 批准号:
19540060 - 财政年份:2007
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STUDY OF NOETHERIAN LOCAL RINGS IN COMMUTAIVE ALGEBRA
交换代数中诺特局部环的研究
- 批准号:
10640002 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Noetherian Local Rings in Commutative Algebra
交换代数中诺特局部环的研究
- 批准号:
03640045 - 财政年份:1991
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




