Study of Noetherian Local Rings in Commutative Algebra
交换代数中诺特局部环的研究
基本信息
- 批准号:03640045
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Construction of Counter-Examples of Noetherian RingsThrough famous examples due to Akizuki and to Nagata, in commutative Noetherian ring theory, it is well-known that constructing counter-examples is no less important than showing positive results. However, thier methods of construction were complicated and hard to get a general principle.For these twenty years, the new construction method, originated by Rotthaus, have been and developed and simplified by Ogoma and by Heitmann. This new construction enables us not only to reconstruct easily known examples but to obtain new unknown examples, which give answers to a number of open problems.Here, we improve this new tool, combining ideas of Nagata, and get the following examples :1)3-dimensional factorial local domain which is not universally catenaty.2)2-dimensional normal local domain of characteristic 0 which is not analytically unramified.3)3-dimensional local domain of characteristic 0 whose derived normal ring is not NOetherian.Chain Conditions on Ideal-adically Complete Nagata RingsGreco has constructed the following surprising example :Example. There exists a semi-local domain (A,m_1, m_2) with an ideal I=P_1 * P_2 (= the intersection of two prime ideals) such that 1) A is complete in I-adic topology, and 2) A/I is excellent, hence universally catenary. But A itself is not universally catenary.On the other hand, we get the following :Theorem 1. Let (A,m) be a local ring with an ideal I.Suppose that 1) A is complete in I-adictopology, and 2) A/I is a universally catenary Nagata ring. Then, A itself is universally catenary.Theorem 2. Let A be a Noetherian domain with a prime ideal P.Suppose that 1) A is complete in P-adic topology, and 2) A/P is a universally catenary Nagata ring. Then, A itself is universally catenary.
构造Noether环的反例通过Akizuki和Nagata的著名例子,在交换Noether环理论中,众所周知,构造反例的重要性不亚于证明正结果。但其施工方法复杂,难以得到普遍的原则,近20年来,这种新的施工方法由Rotthaus首创,经过Ogoma和Heitmann的发展和简化。这种新的构造不仅使我们能够重建容易知道的例子,而且还可以获得新的未知例子,这些例子可以回答一些开放的问题。在这里,我们改进了这个新工具,结合Nagata的思想,并得到以下例子:1)三维阶乘局部域不是泛链的,2)特征为0的二维正规局部域不是解析不可分歧的,3)特征为0的三维局部域其导出正规环不是诺特环的. Greco构造了以下令人惊讶的例子:存在一个半局部整环(A,m_1,m_2),其理想I=P_1 * P_2(=两个素理想的交)使得1)A在I-adic拓扑中是完备的,2)A/I是优的,因而是泛悬链线的.但A本身并不是泛悬链线。另一方面,我们得到如下结果:定理1。设(A,m)是具有理想I的局部环,设1)A是I-自根拓扑完备的,2)A/I是泛悬链线Nagata环.则A本身是泛悬链线。定理2。设A是具有素理想P的Noether整环,1)A是P-adic拓扑完备的,2)A/P是泛悬链线Nagata环。那么,A本身就是泛悬链线。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
西村純一: "Symbolic Powers,Rees Algebras and Applications" lecture note in pure and applied mathematics. 153. 205-213 (1993)
Junichi Nishimura:“符号幂、里斯代数和应用”纯数学和应用数学讲义。153. 205-213 (1993)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西村純一: "Ideal-adic completion of excellent rings" 第38回代数学シンポジウム報告集. 81-84 (1993)
Junichi Nishimura:“优秀环的理想完成”第 38 届代数研讨会报告 81-84(1993)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
日吉雄次,西村純一: "Chain Conditions on Ideal-adically Complete Nagata Rings" Journal of Mathematics of Kyoto University.
Yuji Hiyoshi、Junichi Nishimura:“理想完全永田环的链条件”京都大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西村 純一: "Symbolic Powers,Rees Algebras and Applications" 数理解析研究所講究録. 801. 163-173 (1992)
Junichi Nishimura:“符号幂、里斯代数及其应用”数学科学研究所的 Kokyuroku 801. 163-173 (1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
西村純一: "A Few Examples of Local Rings II" preprint.
Junichi Nishimura:“局部环 II 的一些例子”预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIMURA Jun-ichi其他文献
NISHIMURA Jun-ichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIMURA Jun-ichi', 18)}}的其他基金
Investigation of eculizumab therapeutic response to patients with PNH
依库丽单抗对 PNH 患者的治疗反应研究
- 批准号:
26461447 - 财政年份:2014
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of Noetherian local rings in commutative algebra
交换代数中诺特局部环的研究
- 批准号:
19540060 - 财政年份:2007
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Noetherian Local Rings in Commutative Algebra
交换代数中诺特局部环的研究
- 批准号:
16540047 - 财政年份:2004
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STUDY OF NOETHERIAN LOCAL RINGS IN COMMUTAIVE ALGEBRA
交换代数中诺特局部环的研究
- 批准号:
10640002 - 财政年份:1998
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of local ring theory actively using the theory of Hilbert functions
积极利用希尔伯特函数理论发展局部环理论
- 批准号:
18K03241 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation problems of subcategories of the module category of a Cohen-Macaulay local ring(Fostering Joint International Research)
Cohen-Macaulay 本地环模范畴子范畴的生成问题(促进国际联合研究)
- 批准号:
16KK0099 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
A basic theory of the multiplicity of parameter modules over a local ring
本环参数模重数的基本理论
- 批准号:
22740027 - 财政年份:2010
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)