Classifying spaces of compact Lie groups topology of p-compact groups

p-紧群拓扑的紧李群空间分类

基本信息

  • 批准号:
    16540088
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

The research on the classifying spaces of compact Lie groups is one of the major area in Homotopy Theory. Our results obtained during 2004 through 2005 are basically concerned with maps between classifying spaces and their applications, as well as the invariant theory. Dwyer--Wilkerson introduced the notion of p-compact group and studied its properties. The purely homotopy theoretic object appears to be a good generalization of a compact Lie group. A p-compact group has rich structure, such as a maximal torus, a Weyl group, etc. A note written by Moeller in the AMS Bulletin summarizes their work. Further progress on the homotopy theory of p-compact groups are being made.We state here our main results. First, we considered a further generalization of a result of Dror Farjoun and Zabrodsky on the relationship between fixed point sets and homotopy fixed point sets, which is related to the generalized Sullivan Conjecture : Suppose a-space X with an action of a finite p-group is p-complete and the cohomological dimension is finite. Then the fixed point set is an empty set if and only if the homotopy fixed point set is empty. Next, we consider a problem on the conditions of a compact Lie group G that its loop space of the p-completed classifying space be a p-compact group for a set of primes. In particular, we discuss the classifying spaces BG that are p-compact for all primes when the groups are certain subgroups of simple Lie groups. Finally, we discuss the invariant theory and the cohomology of classifying spaces. The cohomology can be expressed as an invariant ring under the action of the Weyl group. All Weyl groups are reflection groups. We obtained some results on certain reflection groups.
紧李群的分类空间的研究是同伦理论的主要领域之一。我们在2004到2005年间得到的结果基本上是关于分类空间及其应用之间的映射,以及不变量理论。Dwyer-Wilkerson引入了p-紧群的概念,并研究了它的性质。纯同伦理论对象似乎是紧李群的一个很好的推广。P-紧群具有丰富的结构,如极大环面、Weyl群等。Moeller在AMS公报上发表的一篇文章总结了他们的工作。P-紧群的同伦理论正在取得进一步的进展。我们在这里陈述了我们的主要结果。首先,我们考虑了Dror Farjoun和Zabrodsky关于不动点集与同伦不动点集之间关系的一个结果的进一步推广,该结果与推广的Sullivan猜想有关:设a-空间X具有有限p-群作用,X是p-完备的,上同调维度是有限的。则不动点集是空集当且仅当同伦不动点集为空。接下来,我们考虑了紧李群G的一个条件,即它的p-完备分类空间的环空间对于素数集是p-紧群。特别地,我们讨论了当群是单李群的某些子群时,对所有素数是p紧的分类空间BG。最后,我们讨论了分类空间的不变理论和上同调。上同调可表示为Weyl群作用下的不变环。所有的Weyl群都是反射群。我们得到了关于某些反射群的一些结果。

项目成果

期刊论文数量(87)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Milnor operations and the generalized Chern character
米尔诺运算和广义陈省身特征
Minimal open sets and minimal closed sets
最小开集和最小闭集
On decomposition theorems
关于分解定理
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.Ishiguro;H.-S.Lee;N.Oda
  • 通讯作者:
    N.Oda
Classifying spaces of compact Lie groups that are p-compact for all prime numbers
对所有素数都是 p 紧的紧李群空间进行分类
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Kim;N. Innami;Y. Mashiko;K. Shiohama;中西康剛;K.Ishiguro
  • 通讯作者:
    K.Ishiguro
Algebraic vector bundles on SL(3,C)
SL(3,C) 上的代数向量丛
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIGURO Kenshi其他文献

ISHIGURO Kenshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIGURO Kenshi', 18)}}的其他基金

Homotopy Methods in a Generalization of Lie Group Theory
李群理论推广中的同伦方法
  • 批准号:
    14540096
  • 财政年份:
    2002
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homotoy Theory of Classifying Spaces
空间分类同伦理论
  • 批准号:
    09640138
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
  • 批准号:
    2405191
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
  • 批准号:
    2427220
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
  • 批准号:
    2316253
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
  • 批准号:
    2304797
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
  • 批准号:
    2305392
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Computations and applications of Seiberg-Witten Floer stable homotopy type
Seiberg-Witten Floer稳定同伦型的计算与应用
  • 批准号:
    23K03115
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classifying spaces, proper actions and stable homotopy theory
空间分类、适当作用和稳定同伦理论
  • 批准号:
    EP/X038424/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了