Homotoy Theory of Classifying Spaces
空间分类同伦理论
基本信息
- 批准号:09640138
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research on the classifying spaces of compact Lie groups has been one of the major area in Homotoy Theory. Our results obtained during 1997 through 1998 are basically concerned with maps between classifying spaces and their applications. Dwyer-Wilkerson defined ap-compact group and studied its properties. The purely homotopy theoritic object appears to be a good generalization of a compact Lie group. A p-compact group has rich structure, such as a maximal torus, a Weyl group, etc. A note wrtten by Moeller in the AMS Bulletin summarizes their work. Further progress on the homotopy theory of the classifying spaces of p-compact groups are being made.We state here our main results. First, we consider the maps of p-compact groups of the form BX * BY*BZ.The main theorem shows that if the restriction map on BY is a weak epimorphism, then the restriction on BX should factor through the classifying spaces of the center of the p-compact group Z.Next, for G =S^3 * .. * S^3, let X be a genus of BG.We investigate the monoid of rational equivalences of X, denoted by epsilon(X). It is shown that a submonoid of epsilon_0(X), denoted by delta_00(X), determines the decomposability of the space X.We also show converses to some known results for the classifying spaces of p-toral groups or p-compact toral group. Suppose G is a compact Lie group. The following results are obtained. If there is a positive integer k such that the n-th homotopy groups of the p-completion of BG are zero for all n <greater than or equal> k then the loop space of this space is a p-compact toral group. If the canonical map Rep(G, K)*[BG, BK] is bijective for any compact connected Lie group K, then G is a p-toral group. in addition, our work containesa research on the conditions of a compact Lie group that its loop space of the p-completed classifying space be a p-compact group.
紧李群的分类空间的研究一直是同伦理论的主要领域之一。我们在1997到1998年间得到的结果基本上是关于分类空间和它们的应用之间的映射。Dwyer-Wilkerson定义了AP-紧群,并研究了它的性质。纯同伦理论对象似乎是紧李群的一个很好的推广。P-紧群具有丰富的结构,如极大环面、Weyl群等。Moeller在《AMS公报》上的一篇笔记总结了他们的工作。关于p-紧群的分类空间的同伦理论正在取得进一步的进展。我们在这里陈述我们的主要结果。首先,我们考虑形式为BX*by*BZ的p-紧群的映射.主要定理表明,如果By上的限制映射是弱满同态,则对BX的限制应该通过p-紧群Z的中心的分类空间来分解.其次,G=S^3*.*S^3,设X是BG的亏格,我们研究X的有理等价么半群,记为epsilon(X)。证明了E_0(X)的一个子么半群决定了空间X的可分解性,并证明了关于p-型群或p-紧型群的分类空间的一些已知结果。设G是紧李群。得到了以下结果。如果存在正整数k,使得BG的p-完成的n阶同伦群对所有大于或等于>;k的n<;k都为零,则该空间的圈空间是p-紧的。如果标准映射Rep(G,K)*[BG,BK]对任意紧连通李群K是双射的,则G是p-群。此外,我们还研究了紧Lie群的p-完备分类空间的环空间是p-紧的条件。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Akita: "On the homology of Torelli groups and Torelli spaces" Osaka Journal of Mathematics, Proc.Japan Acad.Ser.A. to appear.
T.Akita:“论 Torelli 群和 Torelli 空间的同源性” 大阪数学杂志,Proc.Japan Acad.Ser.A。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ishiguro: "Classifying spaces and finite loop spaces(expository)" The proceedings of Workshops in Pure Mathematics 1996, Korean Academic Council. 1-13 (1997)
K.Ishiguro:“分类空间和有限循环空间(说明)”1996 年纯数学研讨会论文集,韩国学术委员会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N,Oda: "A generalization of the Whitehead product" Math.J.Okayama Univ.(to appear).
N,Oda:“Whitehead 产品的推广”Math.J.Okayama Univ.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Akita: "On the Euler characteristic of the orbit space of a proper GAMMA-complex" Osaka Journal of Mathematics. (to appear).
T.Akita:“论真 GAMMA 复形轨道空间的欧拉特性”大阪数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Akita: "Cohomology and Euler characteristics of Coxeter groups" Science Bulletin of Josai University. Special Issue No.2. 3-16 (1997)
T.Akita:“Coxeter群的上同调和欧拉特征”城西大学科学通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIGURO Kenshi其他文献
ISHIGURO Kenshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIGURO Kenshi', 18)}}的其他基金
Classifying spaces of compact Lie groups topology of p-compact groups
p-紧群拓扑的紧李群空间分类
- 批准号:
16540088 - 财政年份:2004
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homotopy Methods in a Generalization of Lie Group Theory
李群理论推广中的同伦方法
- 批准号:
14540096 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.47万 - 项目类别:
Continuing Grant
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Computations in Classical and Motivic Stable Homotopy Theory
经典和动机稳定同伦理论的计算
- 批准号:
2427220 - 财政年份:2024
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Conference: A Panorama of Homotopy theory
会议:同伦理论全景
- 批准号:
2316253 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Computations and applications of Seiberg-Witten Floer stable homotopy type
Seiberg-Witten Floer稳定同伦型的计算与应用
- 批准号:
23K03115 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Student Support for Second International Conference on Homotopy Type Theory (HoTT 2023)
会议:第二届同伦类型理论国际会议 (HoTT 2023) 的学生支持
- 批准号:
2318492 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant