Numerical Analysis and Computational Geometry Research of Characteristic Finite Element Methods

特征有限元方法的数值分析与计算几何研究

基本信息

  • 批准号:
    16540093
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

1. Research in Numerical analysisIn characteristic finite element schemes, it is required to integrate functions composed from characteristic mappings and base functions of finite element spaces. Although the integrands are not smooth on each element, it has been experienced that the use of higher-order numerical integration formulas gives better finite element solutions. Its reason and suitable order of the numerical integration formula are studied. A model integration problem on stochastic triangles is introduced. Numerical integration formula that makes the mean error zero is investigated. As a result, a conjecture that provides an appropriate order of numerical integration for the characteristic finite element schemes is obtained, that is, (2k+d)-th order formula is reasonable for the characteristic schemes using Pk finite element in the d-th dimensional space.2. Research in Computational GeometryIn above numerical integrations, the triangle having an upwind point, which is the ima … More ge of an integration node by the characteristic mapping, has to be found. Problem of this type is called the point location problem. For the point location problem, one has proposed the trapezoidal map method, which constructs a data structure for the problem based on trapezoidal subdivision of the domain. Efficiency of the data structure depends on the order of input data. A preprocessing algorithm in order to construct an efficient search tree by one time execution of the trapezoidal map method is proposed.3. Related researches : (1)Analysis of the traction method, which is effective for practical computation of shape optimization problems, (2) Analysis of order of a finite element, which gives the traction method better accuracy in the finite element schemes, (3) Derivation of 2D limit models of Boussinesq equation, which is limit of 3D equation as the thickness tends to zero, (4) A new method which reconstruct fine flaw image from a blurred image obtained by the eddy current testing (ECT) is proposed. (5) A new algorithm which attain the SINC function method by the Fourier transformation of Helmholtz decomposition. Less
1.数值分析研究在特征有限元格式中,需要积分由特征映射和有限元空间的基函数组成的函数。虽然被积函数在每个单元上都不是光滑的,但经验表明,使用高阶数值积分公式可以得到更好的有限元解。研究了数值积分公式产生的原因和适用的阶次。介绍了一个关于随机三角形的模型集成问题。研究了使平均误差为零的数值积分公式。由此得到了一个猜想,它为特征有限元格式提供了一个合适的数值积分阶数,即对于在d维空间中使用PK有限元的特征格式,(2k+d)阶公式是合理的。计算几何研究在上述数值积分中,具有迎风点的三角形是图像…必须通过特征映射找到更多的集成节点。这种类型的问题称为点定位问题。对于点定位问题,提出了基于区域梯形剖分的梯形图方法,为点定位问题构建了数据结构。数据结构的效率取决于输入数据的顺序。提出了一种通过一次执行梯形图构造高效搜索树的预处理算法。相关研究内容:(1)对实际形状优化计算中有效的牵引法进行了分析;(2)对有限元的阶次进行了分析,使牵引法在有限元格式中具有更高的精度;(3)推导了Boussinesq方程的二维极限模型,即三维方程在厚度趋于零时的极限;(4)提出了一种从涡流检测得到的模糊图像重建精细缺陷图像的新方法。(5)通过Helmholtz分解的傅里叶变换得到SINC函数方法的新算法。较少

项目成果

期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
2次精度特性曲線有限要素法の数値積分に関する強靭性について
二次精度特征曲线有限元法数值积分的鲁棒性研究
On an image reconstruction method of ECT
一种ECT图像重建方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira SASAMOTO;Takayuki SUZUKI;Yoshihiro NISHIMURA;海津聰;藤間 昌一;笹本 明;Satoshi Kaizu;笹本明
  • 通讯作者:
    笹本明
Benchmark problems for numerical schemes to passively transported interface
无源传输接口数值方案的基准问题
特性有限要素法に用いる数値積分のランダム区間重み付き積分モデルによる誤差解析
特征有限元法数值积分随机区间加权积分模型误差分析
最適形状問題と力法について
关于最佳形状问题和力方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIMA Shoichi其他文献

FUJIMA Shoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Estimation of properties and yield criterion of wood by utilizing multi-scale finite element method
利用多尺度有限元法估算木材的性能和屈服准则
  • 批准号:
    19K15319
  • 财政年份:
    2019
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了