On families of partially ordered sets which have the common structure of upper or lower bounds and the character of graphs which represents them

关于具有上下界共同结构以及表示它们的图的特征的偏序集族

基本信息

  • 批准号:
    16540115
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

In this research, we consider the characterizations of upper bound graphs of posets from various aspects. For a poset P, the upper bound graph of P is the graph G_p=(X,E), where an edge uv belongs to E iff there exists an element m of X such that m is an upper bound of u and v. F.R.McMorris and T.Zaslavsky show a characterization of upper bound graphs using the clique covering conception. Here we give different characterizations by constructive method and also by forbidden substructuresAn upper bound graph can be transformed into a nova by contractions and a nova can be transformed into an upper bound graph by splits. Where nova is a graph class obtained from a star K_<1.n> by replacing each edge with a complete graph with at least two edges. By these results, we get a characterization on upper bound graphs as follows.Let G be a connected graph. G is an upper bound graph if the graph obtained by successive contractions of adjacent non-simplicial vertices u and v satisfying the following conditions is a nova :(1)u and v are adjacent to a simplicial vertex of G.(2)there exist no pair of non-simplicial adjacent vertices x andy which are not adjacent to simlicial vertices of G satisfying ceirtain conditions.The second result is on the characterization of some restricted class of upper bound graphs by concept of forbidden subset in posets. For a poset P, a poset Q is an m-subposet of P iff (1)Q is a subposet of P and, (2)for any pair x,y of Q, x,y <=m for some m in P then there exists m' in Q with x,y <=m'. This definition is introduced by D.D.Scott in 1986. Using this concept we give the following results,(1)G is a split upper bound graph iff the canonical poset of G contain no poset P_<2K2> as an m-subposet.(2)G is a threshold upper bound graph iff the canonical poset of G contain no 2K_2 or P_w as m-subposets.(3)G is difference upper bound graph iff the canonical poset of G contain P_<2K2> or P^as m-subposets.where P_w and P^are certain elementary classes of posets.
在本研究中,我们从多个方面考虑了偏序集上界图的表征。对于偏置集P, P的上界图是图G_p=(X,E),其中边uv属于E,如果存在X的元素m使得m是u和v的上界,则F.R.McMorris和T.Zaslavsky利用团覆盖概念给出了上界图的表征。这里我们用构造法和禁止子结构给出了不同的表征。上界图可以通过收缩转化为新星,新星可以通过分裂转化为上界图。其中nova是由恒星K_<1得到的图类。通过将每条边替换为至少有两条边的完全图,得到N >。根据这些结果,我们得到了上界图的如下表征。设G是连通图。如果满足以下条件的相邻非简单顶点u和v连续收缩得到的图是新星(nova):(1)u和v与G的一个简单顶点相邻(2)不存在对非简单相邻顶点x和不与满足一定条件的G的相似顶点相邻的图,则G是上界图。第二个结果是利用偏集中禁止子集的概念刻画了一类受限的上界图。对于一个偏序集P,一个偏序集Q是P的m-传票集,如果(1)Q是P的m-传票集,(2)对于任意对x,y (Q, x,y <=m)对于P中的某个m,则存在m‘在Q中且x,y <=m’。这个定义是由D.D.Scott在1986年提出的。利用这一概念,我们得到了以下结果:(1)如果G的正则偏序集不包含偏序集P_<2K2>作为m-传讯集,则G是一个分裂上界图。(2)G是一个阈值上界图,如果G的正则序集不包含2K_2或P_w作为m个集。(3)G是差分上界图,如果G的正则序集包含P_<2K2>或P^作为m-传讯集。其中P_w和P^是偏序集的某些初等类。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Note on construction methods of upper bound graphs
上界图构造方法注意事项
On upper bound graph with forbidden subposets
在带有禁止子集的上限图上
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ERA Hiroshi其他文献

ERA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Spectral and Extremal Graph Theory
谱与极值图论
  • 批准号:
    2245556
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
REU Site: Extremal Graph Theory and Dynamical Systems at RIT
REU 网站:RIT 的极值图论和动力系统
  • 批准号:
    2243938
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Conference: Atlanta Lecture Series in Combinatorics and Graph Theory
会议:亚特兰大组合学和图论系列讲座
  • 批准号:
    2321249
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    2404167
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Conference: The 32nd Cumberland Conference on Combinatorics, Graph Theory and Computing
会议:第 32 届坎伯兰组合学、图论和计算会议
  • 批准号:
    2301339
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
CAREER: Merging Graph Theory and Automation for Chemical Synthesis
职业:将图论与化学合成自动化相结合
  • 批准号:
    2236215
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了