Extremal problems and holomorphic mappings of Riemann surfaces
黎曼曲面的极值问题和全纯映射
基本信息
- 批准号:16540158
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let R be a Riemann surface and let Γ be a group of conformal automorphisms of R acting properly discontinuously on R. Hyperbolically maximal domains on R for Γ are obtained by solving some extremal problems. They are closely related to Γ-invariant meromorphic quadratic differentials on R. This fact leads us to a new class of domains on R, that of Γ-circularizable domains. These domains have many interesting properties. If D is a Γ-cirucularizable domain, then it is simply connected. The boundary ∂D is a branched polygon unless it reduces to a point. In fact, ∂D consists of horizontal trajectories and critical points of some Γ-invariant meromorphic quadratic differential on R. If D is not compact, then for some point p in D the domain D is precisely invariant under the stabilizer of p in the whole group Γ.Now, every hyperbolically maximal domain for Γ is Γ-circularizable. Many interesting properties of hyperbolically maximal domains come from their circularizability. We give a necessary and sufficient condition for a Γ-circularizable domain to be hyperbolically maximal for Γ.Next, we generalize the above mentioned extremal problems and obtain generalized hyperbolically maximal domains. These generalized domains turns out to be more naturally related to circularizable domains than the original ones.
设R是一个Riemann曲面,Γ是R的一组真不连续作用在R上的共形自同构。通过解一些极值问题得到了R上的双曲极大域。它们与R上的Γ-不变亚纯二次微分密切相关。这一事实使我们得到了R上的一类新的Domain,即Γ-可循环Domain。这些域具有许多有趣的性质。若D是一个Γ-可圈化整环,则它是单连通的.除非边界线减少为一点,否则边界线是一个分支多边形。实际上,RSDD是由R上某个Γ-不变亚纯二次微分的水平轨线和临界点组成的。若D不是紧的,则对于D中的某点p,整环D在整个群Γ中的p的稳定子下精确不变.双曲极大整环的许多有趣的性质来自于它们的可圈化性。给出了一个Γ-可循环域为双曲极大域的充要条件,并将上述极值问题推广到广义双曲极大域.这些广义域比原来的域更自然地与可循环域相关。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal mapping of Riemann surfaces and the classical theory of univalent functions
黎曼曲面的共形映射和单价函数的经典理论
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Kawashita;W.Kawashita;H.Soga;Makoto Masumoto;T.Morita;増本 誠;H.Matsunaga;R.Ikehata;Makoto Masumoto;M.Kawashita;Masakazu Shiba
- 通讯作者:Masakazu Shiba
Intermediate theorem for functions on classes of Riemann surfaces
黎曼曲面类函数的中间定理
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Kawashita;W.Kawashita;H.Soga;Makoto Masumoto;T.Morita;増本 誠;H.Matsunaga;R.Ikehata;Makoto Masumoto
- 通讯作者:Makoto Masumoto
Regions of variability for functions of bounded derivatives
- DOI:10.2996/kmj/1123767023
- 发表时间:2005-06
- 期刊:
- 影响因子:0.6
- 作者:H. Yanagihara
- 通讯作者:H. Yanagihara
On the variety $W_d^r(C)$ whose dimension is at least d-3r-2
在维数至少为 d-3r-2 的变量 $W_d^r(C)$ 上
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:T.Kato;C.Keem;A.Ohbuchi
- 通讯作者:A.Ohbuchi
Global solution of two-layer Navier–Stokes flow
- DOI:10.1016/j.na.2005.02.047
- 发表时间:2005-11
- 期刊:
- 影响因子:1.4
- 作者:Yasushi Hataya
- 通讯作者:Yasushi Hataya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MASUMOTO Makoto其他文献
MASUMOTO Makoto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MASUMOTO Makoto', 18)}}的其他基金
Research on holomorphic mappings of Riemann surfaces --- generalizations and applications of handle conditions
黎曼曲面全纯映射研究——柄条件的推广与应用
- 批准号:
18K03334 - 财政年份:2018
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Researches on holomorphic mapings of Riemann surfaces---existence of mappings and conformal invariants
黎曼曲面全纯映射研究——映射与共形不变量的存在性
- 批准号:
26400140 - 财政年份:2014
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces----roles of handles played in the existence problem of holomorphic mappings
黎曼曲面全纯映射研究——柄在全纯映射存在问题中的作用
- 批准号:
22540196 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holomorphic mappings of Riemann surfaces with handles
带柄的黎曼曲面的全纯映射
- 批准号:
19540187 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Holomorphic mappings and moduli of Riemann surfaces
黎曼曲面的全纯映射和模
- 批准号:
12440041 - 财政年份:2000
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on holomorphic mappings between Riemann surfaces
黎曼曲面间的全纯映射研究
- 批准号:
09440063 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)