Research on holomorphic mappings between Riemann surfaces

黎曼曲面间的全纯映射研究

基本信息

  • 批准号:
    09440063
  • 负责人:
  • 金额:
    $ 3.26万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

Let R be a marked open Riemann surface of positive finite genus. We are concerned with the space H of marked closed Riemann surfaces of the same genus into which there is a holomorphic mapping of R homotopic to a homeomorphism. The space H is a subset of the Teichmuller space T.We first show that H coincides with T if the genus is one, while H is a compact subset of T if the genus is greater than one. Next we compare H with the space M of marked compact Riemann surfaces of the same genus into which R can be conformally embedded. Obviously, M is a subset of H.If the genus is greater than one and R is conformally equivalent to a Riemann surface obtained from a compact Riemann surface by removing a discrete set, then M is identical with H.We prove, on the other hand, that if R has a border-like boundary component, then M is a proper subset of H.Now, let R and S be Riemann surfaces homeomorphic to each other, and fix a homeomorphism h of R onto S.We are interested in the following conditions :(a) There is a conformal mapping of R into S homotopic to h.(b) There is a conformal mapping of R into S homotopic to h.It is trivial that condition (a) implies condition (b). By a theorem of Schiffer, in the case where K is a doubly connected planar Riemann surface with finite modulus, the converse is also true. We apply the results in the preceding paragraph to show that if R is of positive finite genus and has a border-like boundary component, then condition (a) does not necessarily follow from condition (a).
设R为正有限属的标记开黎曼曲面。我们研究了具有同属标记的闭黎曼曲面的空间H,其中存在一个R同伦到一个同胚的全纯映射。空间H是Teichmuller空间T的一个子集。我们首先证明了当格为1时H与T重合,而当格大于1时H是T的紧子集。接下来,我们比较H与空间M的标记紧致黎曼曲面的同属,其中R可以共形嵌入。显然,M是h的一个子集。如果属大于1,并且R共形等价于一个由紧黎曼曲面去掉离散集得到的黎曼曲面,则M与h相同。另一方面,我们证明,如果R有一个类边边界分量,则M是h的一个固有子集。现在,设R和S是彼此同胚的黎曼曲面。将R的同胚h固定到S上,我们感兴趣的是以下条件:(a) R有一个正形映射到S同伦h (b) R有一个正形映射到S同伦h,条件(a)暗示条件(b)是平凡的。根据Schiffer定理,当K是有限模的双连通平面黎曼曲面时,反之也成立。我们应用前一段的结果来证明,如果R是正有限属并且有一个类边边界分量,则条件(a)不一定从条件(a)推导出来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takao Kato: "Changho Keem and Akira Ohbuchi, Variety of special linear systems on k-sheeted coverings" Geometriae Dedicata. 69. 53-65 (1998)
Takao Kato:“Changho Keem 和 Akira Ohbuchi,k 片状覆盖物上的各种特殊线性系统”Geometriae Dedicata。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikihiro Hayashi: "Point separation of a two-sheeted disc by bounded analytic functions" Hokkaido Mathematical Journal. 27. 553-565 (1998)
Mikihiro Hayashi:“通过有界解析函数对两片圆盘进行点分离”北海道数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomomi Gouma: "Ahlfors functions on non-planar Riemann sur-faces whose double are hyperelliptic" Journal of Mathematical So-ciety of Japan. 50. 685-695 (1998)
Tomomi Gouma:“Ahlfors 函数在非平面黎曼曲面上,其双曲面是超椭圆”,日本数学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikihiro Hayashi and Takao Kato: "Point separation of a two-sheeted disc by bounded analytic functions" Hokkaido Mathematical Jour-nal. 27. 553-565 (1998)
Mikihiro Hayashi 和 Takao Kato:“通过有界解析函数对两片圆盘进行点分离”北海道数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Coppens: "The weierstrass gap seguence at inflection point on plane curves and aligned inflection points" Unione Matematica Italiana. Bollettino. B Serie VII. 11. 1-33 (1997)
M.Coppens:“平面曲线拐点处的威尔斯特拉斯间隙序列和对齐的拐点”Unione Matematica Italiana。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUMOTO Makoto其他文献

MASUMOTO Makoto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUMOTO Makoto', 18)}}的其他基金

Research on holomorphic mappings of Riemann surfaces --- generalizations and applications of handle conditions
黎曼曲面全纯映射研究——柄条件的推广与应用
  • 批准号:
    18K03334
  • 财政年份:
    2018
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Researches on holomorphic mapings of Riemann surfaces---existence of mappings and conformal invariants
黎曼曲面全纯映射研究——映射与共形不变量的存在性
  • 批准号:
    26400140
  • 财政年份:
    2014
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on holomorphic mappings of Riemann surfaces----roles of handles played in the existence problem of holomorphic mappings
黎曼曲面全纯映射研究——柄在全纯映射存在问题中的作用
  • 批准号:
    22540196
  • 财政年份:
    2010
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic mappings of Riemann surfaces with handles
带柄的黎曼曲面的全纯映射
  • 批准号:
    19540187
  • 财政年份:
    2007
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extremal problems and holomorphic mappings of Riemann surfaces
黎曼曲面的极值问题和全纯映射
  • 批准号:
    16540158
  • 财政年份:
    2004
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Holomorphic mappings and moduli of Riemann surfaces
黎曼曲面的全纯映射和模
  • 批准号:
    12440041
  • 财政年份:
    2000
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Complexity of the objects of complex analysis and holomorphic mapping problems
复分析对象的复杂性与全纯映射问题
  • 批准号:
    0072197
  • 财政年份:
    2000
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Study of Holomorphic Mapping Theory and Diophantine Approximations
数学科学:全纯映射理论和丢番图近似的研究
  • 批准号:
    9300526
  • 财政年份:
    1993
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Standard Grant
Holomorphic mapping in serveral variables
多个变量的全纯映射
  • 批准号:
    9221-1990
  • 财政年份:
    1992
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Discovery Grants Program - Individual
Holomorphic mapping in serveral variables
多个变量的全纯映射
  • 批准号:
    9221-1990
  • 财政年份:
    1991
  • 资助金额:
    $ 3.26万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了