Quasilinear Elliptic Differential Equations of Critical Nonlinear Growth

临界非线性增长的拟线性椭圆微分方程

基本信息

  • 批准号:
    16540197
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

We studied a Dirichlet boundary value problem of a degenerate quasilinear elliptic equation which has the φ-Laplace operator in the principal part. The main result is the existence theorem of nonnegative nontrivial solutions via variational methods in Orlicz-Sobolev space settings. It can be applied to a wide class of elliptic equations even if the principal parts have non power-like nonlinearities. In the following let φ(t)t = Φ'(t)(1) The quasilinear elliptic problem of subcritical growth: An existence theorem of multiple nonnegative nontrivial solutions is proved. In a previous paper we have discussed the problem under the hypothesis φ(t)t = o(f(x, t)) at t = 0 and ∞, which corresponds to classical results about a semilinear elliptic equation with a concave-convex lower term. In this time we consider the case f(x, t) = ο(φ(t)t) at t = 0 and ∞ contrary to the problem treated above. Further we also consider an equation with more general principal part.(2) The quasilinear elliptic problem of critical Orlicz-Sobolev growth : We make some modification of the standard concentration-compactness principle and obtain an existence theorem of a nonnegative nontrivial solution. For example it can be applied to the the case Φ(t) = t^p log(1 + t), p > 1.(3) Minimax problem of a nonsmooth functional : The variational problem for a functional with slowly growing principal part and involving critical Orlicz-Sobolev lower term (with respect to the principal part) is discussed. The functional is not Frechet differentiable, although it Gateaux differentiable. A nonnegative nontrivial solution for the Euler equation is given. For example the result can be applied to the case Φ(t) = t log(1 + t).
研究了一类主算子为φ-拉普拉斯算子的退化拟线性椭圆型方程的Dirichlet边值问题.主要结果是在Orlicz-Sobolev空间中利用变分方法得到了非负非平凡解的存在性定理。它可以应用到一个广泛的一类椭圆方程,即使主部分有非幂类非线性。设φ(t)t = φ ′(t)(1)次临界增长的拟线性椭圆型问题:证明了多个非负非平凡解的存在性定理。在前一篇文章中,我们讨论了假设φ(t)t = o(f(x,t))在t = 0和∞时的问题,这对应于半线性椭圆型方程的经典结果。此时我们考虑f(x,t)= o(φ(t)t)在t = 0和∞时的情况,与上面处理的问题相反。进一步,我们还考虑了一个主部更一般的方程. (2)临界Orlicz-Sobolev增长的拟线性椭圆问题:对标准的集中紧性原理作了一些修改,得到了非负非平凡解的存在性定理.例如,它可以应用于Φ(t)= t^p log(1 + t),p > 1的情况。(3)非光滑泛函的极大极小问题:讨论了主部缓慢增长且包含临界Orlicz-Sobolev低阶项(关于主部)的泛函的变分问题。泛函不是Frechet可微的,尽管它是Gateaux可微的。给出了欧拉方程的一个非负非平凡解。例如,结果可以应用于Φ(t)= t log(1 + t)的情况。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positive Solutions of Quasilinear Elliptic Equations with Critical Orlicz-Sobolev Nonlinearity on RN
  • DOI:
    10.1619/fesi.49.235
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuyoshi Fukagai;Masayuki Itô;K. Narukawa
  • 通讯作者:
    Nobuyoshi Fukagai;Masayuki Itô;K. Narukawa
On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems
  • DOI:
    10.1007/s10231-006-0018-x
  • 发表时间:
    2007-07
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Nobuyoshi Fukagai;K. Narukawa
  • 通讯作者:
    Nobuyoshi Fukagai;K. Narukawa
Posistive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on R^N.
R^N 上具有临界 Orlicz-Sobolev 非线性的拟线性椭圆方程的正解。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    [2] Y.Muroya;E.Ishiwata;N.Guglielmi;N.Fukagai
  • 通讯作者:
    N.Fukagai
Variational Methods in Orlicz-Sobolev spaces to quasilinear elliptic equations.
Orlicz-Sobolev 空间中拟线性椭圆方程的变分方法。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    [2] Y.Muroya;E.Ishiwata;N.Guglielmi;N.Fukagai;N.Fukagai;深貝暢良
  • 通讯作者:
    深貝暢良
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKAGAI Nobuyoshi其他文献

FUKAGAI Nobuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKAGAI Nobuyoshi', 18)}}的其他基金

Qualitative Theory of Quasilinear Degenerate Elliptic Differential Equations
拟线性简并椭圆微分方程的定性理论
  • 批准号:
    11640206
  • 财政年份:
    1999
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Theory of Nonlinear Elliptic Differential Equations
非线性椭圆微分方程的定性理论
  • 批准号:
    09640196
  • 财政年份:
    1997
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了