Qualitative Theory of Nonlinear Elliptic Differential Equations

非线性椭圆微分方程的定性理论

基本信息

  • 批准号:
    09640196
  • 负责人:
  • 金额:
    $ 0.51万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

We studied the subjects related to qualitative theory of nonlinear elliptic differential equations : (i) bound-ary value problems of quasilinear elliptic equations in a bounded domain ; (ii) oscillatory problem of ordi-nary differential equations which derived from qualitative problem of elliptic equations in an unbounded domain. Our results are the following.[1] The asymptotic behavior of eigenvalues and eigenfunctions of p-Laplace operator is investigated. We obtain the best constant of L*-Poincare inequality, and a limit equation which the limits of eigenvalues and eigenfuncitons satisfy in a weak sense.[2] A Sturm-Liouville equation on (a, *) is examined. Supposing a strongly nonoscillatory condition, we obtain a sequence of positive princial eigenvalues and the corresponding principal eigenfunctions.[3] Concering an initial value problem of parabolic equation, we obtain a new sufficient condition on the initial value which determines the solution to blow up. Furthermore, we investigate the asymtotic behavior of the solution at the blowing lip time.[4] We consider a second order half-linear differential equation on [a, *]. We take up the two classes of nonoscillatory solutions (i.e., princilal solutions and non principal solutions), and show that precise information can be drawn as to how the number of zeros of these solutions changes as lambda varies from zero to infinity.[5] A bifurcation problem or a nonlinear eigenvalue problem for degenerate quasilinear elliptic equations with Dirichelt boundary condition is studied. By virture of our estimates, we can apply the Leray-Shauder degree theory to our problem and obtain the bifurcation of nontrivial weak solutions.[6] Quasiperiodic solutions to Van der Pol type equations driven by two or more distinct freequency input signals are considered. The existence and uniqueness results are obtained from the viewpoint of numerical analysys.
我们研究了与非线性椭圆型微分方程定性理论有关的问题:(I)有界域上拟线性椭圆型方程的边值问题;(Ii)由无界区域上椭圆型方程的定性问题引出的偏微分方程解的振动性问题。我们的结果如下:[1]研究了p-Laplace算子的特征值和特征函数的渐近行为。我们得到了L~*-庞加莱不等式的最佳常数,以及特征值和特征函数的极限在弱意义下所满足的极限方程。在强非振动条件下,我们得到了一个正的主特征值序列和相应的主特征函数。[3]对于抛物型方程的一个初值问题,我们得到了一个新的关于初值的充分条件,它决定了解的爆破。此外,我们还研究了在吹唇时解的渐近性。[4]我们考虑了[a,*]上的一个二阶半线性微分方程解。我们得到了两类非振动解(即基本解和非主解),并证明了这些解的零点个数随波长从零变化到无穷大而变化的精确信息。[5]研究了具有Dirichelt边界条件的退化拟线性椭圆型方程的分歧问题或非线性特征值问题。借助于我们的估计,我们可以将Leray-Shauder度理论应用到我们的问题中,并得到非平凡弱解的分支。[6]考虑由两个或多个不同的频率输入信号驱动的Van der Pol型方程的拟周期解。从数值分析的角度得到了解的存在唯一性结果。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kusano and M.Naito: "A singular eigenvalue problem for Sturm-Liouville equations." Differ.Uravn.印刷中.
T. Kusano 和 M. Naito:“Sturm-Liouville 方程的奇异特征值问题”,正在出版。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Fukagai, M.Ito and K.Narukawa: "A bifurcation problem of some nonlinear degenerate elliptic equations." Adv.Differential Equations. 2. 895-926 (1997)
N.Fukagai、M.Ito 和 K.Narukawa:“一些非线性简并椭圆方程的分岔问题。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Kohada and T.Suzuki: "A note on the blow-up pattern for a parabolic equation." J.Math.Tokushima Univ.32. 19-25 (1998)
A.Kohada 和 T.Suzuki:“关于抛物线方程的爆炸模式的注释。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Elbert,T.Kusano and M.Naito: "Singular eigenvalue problems for second order linear ordinary differential equations." Arch.Math.(Brno). 34. 59-72 (1998)
A.Elbert、T.Kusano 和 M.Naito:“二阶线性常微分方程的奇异特征值问题”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Fukagai, M.Ito and K.Narukawa: "Limits as p * * of p-Laplace eigenvalue problems and related Poincare type inequalities." Differential Integral Equations. (in press).
N.Fukagai、M.Ito 和 K.Narukawa:“p-拉普拉斯特征值问题和相关庞加莱型不等式的 p * * 限制。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKAGAI Nobuyoshi其他文献

FUKAGAI Nobuyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKAGAI Nobuyoshi', 18)}}的其他基金

Quasilinear Elliptic Differential Equations of Critical Nonlinear Growth
临界非线性增长的拟线性椭圆微分方程
  • 批准号:
    16540197
  • 财政年份:
    2004
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Theory of Quasilinear Degenerate Elliptic Differential Equations
拟线性简并椭圆微分方程的定性理论
  • 批准号:
    11640206
  • 财政年份:
    1999
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
  • 批准号:
    2111059
  • 财政年份:
    2021
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
The study on nonlinear elliptic partial differential equations via variational and perturbation methods
非线性椭圆偏微分方程的变分法和摄动法研究
  • 批准号:
    20K03691
  • 财政年份:
    2020
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
  • 批准号:
    2271985
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Studentship
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
  • 批准号:
    2002137
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
  • 批准号:
    1906220
  • 财政年份:
    2019
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
  • 批准号:
    1818861
  • 财政年份:
    2018
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Continuing Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
  • 批准号:
    1800645
  • 财政年份:
    2018
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
Nonlinear elliptic partial differential equations having variation structure
具有变分结构的非线性椭圆偏微分方程
  • 批准号:
    16K17623
  • 财政年份:
    2016
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
  • 批准号:
    1612015
  • 财政年份:
    2016
  • 资助金额:
    $ 0.51万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了