Qualitative Theory of Quasilinear Degenerate Elliptic Differential Equations
拟线性简并椭圆微分方程的定性理论
基本信息
- 批准号:11640206
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the subjects related to qualitative theory of nonlinear elliptic differential equations : (i) boundary value problems of quasilinear elliptic equations in a bounded domain ; (ii) blowup phenomena of seminilear parabolic equations ; (iii) solutions of ordinary differential equations derived from qualitative problem of elliptic equations in an unbounded domain. Our results are the following.1. Positive solutions of a class of nonlinear eigenvalue problems are investigated. For a quasilinear elliptic problem (^*)-div (φ(|∇u|) ∇u)=λf(x, u) in Ω, u=0 on ∂Ω, we assume asymptotic conditions on φ and f such as φ(t)〜t^<p_0-2>, f(x, t)〜t^<q_0-1> as t→0 andφ(t)〜t^<p_1-2>, f(x, t)〜t^<q_1-1> as t→∞. The combined effects of sub-nonlinearity (p_0>q_0) and super-nonlinearity (p_1<q_1) imply the existence of at least two positive solutions of (^*) for 0<λ<Λ.2. Concerning an initial value problem of semilinear parabolic equations with convex nonlinearities, we obtain sufficient conditions which determine the solution to blow up. The criteria are formulated in terms of super-solution and sub-solution of the related stational problem.3. A Sturm-Liouville equation on [α, ∞) is examined. (1) Higher order ordinary differential equations with general nonlinearities and determination of the Kiguraze class of positive sotuions. (2) Oscillation problem of first order 4-dimensional system of ordinary differential equations. (3) Eigenvalue problem of second order half-linear ordinary differential equations on [α, ∞).
我们研究了与非线性椭圆型方程定性理论有关的问题:(I)有界区域上拟线性椭圆型方程的边值问题;(Ii)半线性抛物型方程的爆破现象;(Iii)由无界区域上椭圆型方程定性问题导出的常微分方程解。我们的研究结果如下所示。研究了一类非线性特征值问题的正解。对于拟线性椭圆问题(^*)-div(φ(|∇u|)∇u)=λf(x,u)在Ω上,u=0在∂Ω上,我们假定φ和f上的渐近条件如下:φ(T)~t^<;p_0-2>;,f(x,t)~t^<;q_0-1>;as t→0和φ(T)~t^<;p_1-2>;,f(x,t)~t^<;q_1-1>;as t→∞。亚非线性(p_0>;q_0)和超非线性(p_1<;q_1)的综合作用意味着0<;λ<;Λ2的(^*)至少存在两个正解。对于具有凸非线性的半线性抛物型方程的初值问题,我们得到了判定解爆破的充分条件。根据相关静态问题的上解和下解,给出了判定准则。研究了[α,∞]上的一个Sturm-Liouville方程。(1)具有一般非线性的高阶常微分方程及Kiguraze类正解的确定。(2)一阶四维常微分方程组的振动性问题。(3)二阶半线性常微分方程组在[α,∞]上的特征值问题。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atsuhito Kohda and Takashi Suzuki: "Blow-up criteria for semiliniear parabolic equations."J.Math.Anal.Appl.. 243. 127-139 (2000)
Atsuhito Kohda 和 Takashi Suzuki:“半线性抛物线方程的放大准则。”J.Math.Anal.Appl.. 243. 127-139 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Naito: "Positive solutions of higher order ordinary differential equations with general nonlinearities"J.Math.Anal.Appl.. 250. 27-48 (2000)
M.Naito:“具有一般非线性的高阶常微分方程的正解”J.Math.Anal.Appl.. 250. 27-48 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kohda: "Blow-up criteria for semiliniear parabolic equations"J.Math.Anal.Appl.. 243. 127-139 (2000)
A.Kohda:“半线性抛物线方程的放大准则”J.Math.Anal.Appl.. 243. 127-139 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kusano: "On the oscillation of solutions of 4-dimensional Emden-Fowler differential systems"Adv.Math.Sci.Appl.. 11(印刷中). (2001)
T.Kusano:“关于 4 维 Emden-Fowler 微分系统解的振荡”Adv.Math.Sci.Appl.. 11(印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kusano: "Sturm-Liouville eigenvalue problems for half-linear ordinary differential equations"Rocky Mountain J.Math.. (印刷中).
T.Kusano:“半线性常微分方程的 Sturm-Liouville 特征值问题”Rocky Mountain J.Math..(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKAGAI Nobuyoshi其他文献
FUKAGAI Nobuyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKAGAI Nobuyoshi', 18)}}的其他基金
Quasilinear Elliptic Differential Equations of Critical Nonlinear Growth
临界非线性增长的拟线性椭圆微分方程
- 批准号:
16540197 - 财政年份:2004
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative Theory of Nonlinear Elliptic Differential Equations
非线性椭圆微分方程的定性理论
- 批准号:
09640196 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
- 批准号:
23K03167 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
- 批准号:
2111059 - 财政年份:2021
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
The study on nonlinear elliptic partial differential equations via variational and perturbation methods
非线性椭圆偏微分方程的变分法和摄动法研究
- 批准号:
20K03691 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Studentship
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
- 批准号:
2002137 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Relating Fukaya Categories Using Combinatorics, Operads, and Nonlinear Elliptic Partial Differential Equations
使用组合学、运算和非线性椭圆偏微分方程关联 Fukaya 类别
- 批准号:
1906220 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
- 批准号:
1818861 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Qualitative Properties of Solutions to Nonlinear Elliptic Partial Differential Equations
非线性椭圆偏微分方程解的定性性质
- 批准号:
1800645 - 财政年份:2018
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Nonlinear elliptic partial differential equations having variation structure
具有变分结构的非线性椭圆偏微分方程
- 批准号:
16K17623 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant