Emotional communication between human and machine using motion of joints of body

利用身体关节的运动实现人与机器之间的情感交流

基本信息

  • 批准号:
    17500140
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

The purpose of this research was to achieve emotional communication between humans and robots. Numerous attempts have been made by scholars to show that the expressions of feces and voices are effective in receiving and manifesting emotion between humans and robots. Instead of feces and voices, we use body movement as a cue to emotion. We have obtained following results.We have built a movie database for emotion study. A motion-capturing system was used to get human gait information. 12 sensors were put onto walker's principal joints. Actors were asked to express emotion while walking. The database includes gait information from 30 actors.We investigated human percept on emotion from gait display. The gait data were presented as biological motion. Human subjects were asked to answer perceived emotion from the display. The rate of correct answer was 40%.We constructed an emotion-recognition system. A method of feature extraction to discriminate emotions of human from a sensing data of human gait patterns was studied. We assume that the high dimensional biological motion data are generated by low dimensional features which components are statistically independent. The extracted feature is evaluated by a discriminated result of the given biological motion data which identified five types of categories, "Anger", "Grief", "Disgust", "Joy" and "Fear". We achieve 40% accuracy for 5-class of emotion discrimination with 3 actors' biological motion data.
这项研究的目的是实现人与机器人之间的情感交流。许多学者试图证明粪便和声音的表达在人与机器人之间的情感接收和表现上是有效的。我们不是用粪便和声音,而是用身体动作作为情感的线索。我们得到了以下结果。我们建立了一个用于情感研究的电影数据库。采用动作捕捉系统获取人体步态信息。在沃克的主要关节上安装了12个传感器。演员们被要求在走路时表达情感。该数据库包括30位演员的步态信息。我们从步态表现的角度研究了人类对情绪的感知。步态数据以生物运动形式呈现。人类受试者被要求回答从展示中感知到的情绪。正确率为40%。我们构建了一个情绪识别系统。研究了一种从人体步态模式感知数据中提取人体情绪特征的方法。我们假设高维生物运动数据是由低维特征生成的,这些特征的组成部分在统计上是独立的。提取的特征通过给定的生物运动数据的判别结果进行评估,识别出五种类型的类别,“愤怒”,“悲伤”,“厌恶”,“快乐”和“恐惧”。我们用3个演员的生物动作数据对5类情绪进行识别,准确率达到40%。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
動画像における視覚的注意モデルの構築
建立视频图像的视觉注意模型
だまされる脳
大脑被愚弄
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Otani;N.Hashimoto;K.Abe;H.Nambo;H.Kimura;S.Ka jiwara;日本VR学会VR心理学究会編
  • 通讯作者:
    日本VR学会VR心理学究会編
感情識別のための独立成分分析によるバイオロジカルモーションデーターからの特徴抽出
使用独立成分分析从生物运动数据中提取特征以进行情绪识别
アニマシー知覚を利用した生体検出
使用生命感知进行活体检测
Feature extraction from Biological motion of human gait patterns for emotion discrimination
从人类步态模式的生物运动中提取特征以进行情感辨别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Masahiro其他文献

ISHII Masahiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Masahiro', 18)}}的其他基金

Development and the etiology investigation of the effective cure of the Kawasaki disease : Molecular genetic base and proteome analysis
川崎病有效治疗方法的开发和病因学研究:分子遗传基础和蛋白质组分析
  • 批准号:
    21591397
  • 财政年份:
    2009
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Game Theoretic Pricing Models for Electricity Markets andApplications to Economic Policy
电力市场博弈论定价模型及其在经济政策中的应用
  • 批准号:
    20530214
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathogenesis and therapeutic strategy of Kawasaki disease : Gene expression determined by microarray study
川崎病的发病机制和治疗策略:通过微阵列研究确定基因表达
  • 批准号:
    18591166
  • 财政年份:
    2006
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-term follow-up results of percutaneous catheter intervention and coronary artery bypass grafting : A multi center study
经皮导管介入治疗和冠状动脉搭桥术的长期随访结果:多中心研究
  • 批准号:
    17639012
  • 财政年份:
    2005
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathogenesis and long-term prognosis of Kawasaki disease : New therapeutic strategy using vasogenesis therapy
川崎病的发病机制和长期预后:血管生成疗法的新治疗策略
  • 批准号:
    16591066
  • 财政年份:
    2004
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pathogenesis of Kawasaki disease : Gene expression in susceptible hosts determined by microarray
川崎病的发病机制:通过微阵列测定易感宿主的基因表达
  • 批准号:
    14570786
  • 财政年份:
    2002
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vascular remodeling in Kawasaki disease
川崎病的血管重塑
  • 批准号:
    12670797
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Predictive Biomechanics for Modelling Gait Stability and Falls Prediction
用于步态稳定性和跌倒预测建模的预测生物力学
  • 批准号:
    DP240101449
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Discovery Projects
Assist-as-Needed Ankle Assistance Strategy Integrating Immersive MR system for Ensuring Voluntary Effort and Stimulating Neurorepair during Post-Stroke Gait Training
按需协助踝关节辅助策略集成沉浸式 MR 系统,确保中风后步态训练期间的自愿努力并刺激神经修复
  • 批准号:
    24K21161
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Neuromechanical modeling for gait neurorehabilitation design and prescription
职业:步态神经康复设计和处方的神经力学建模
  • 批准号:
    2339331
  • 财政年份:
    2024
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Continuing Grant
A patient-oriented research approach to studying sex differences in the prosthetic needs and priorities of lower limb amputees
以患者为导向的研究方法,用于研究下肢截肢者的假肢需求和优先事项的性别差异
  • 批准号:
    485115
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Operating Grants
Development of a Clinical Gait Analysis Service
临床步态分析服务的开发
  • 批准号:
    486987
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Miscellaneous Programs
Neurophysiological mechanism underlying freezing of gait in Parkinson's disease: transcutaneous spinal cord stimulation for gait disturbance
帕金森病步态冻结的神经生理机制:经皮脊髓刺激治疗步态障碍
  • 批准号:
    23K10409
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STTR Phase I: A novel wall-mounted gait assist system to reduce the risk of injuries on stairs and level surfaces
STTR 第一阶段:一种新型壁挂式步态辅助系统,可降低楼梯和水平面上受伤的风险
  • 批准号:
    2304063
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Standard Grant
Developing a gait-based system to detect early knee osteoarthritis.
开发基于步态的系统来检测早期膝骨关节炎。
  • 批准号:
    23K16633
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A machine learning model to assess the presence and severity of knee osteoarthritis based on gait data features
基于步态数据特征评估膝骨关节炎的存在和严重程度的机器学习模型
  • 批准号:
    23K16611
  • 财政年份:
    2023
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了