Characteristic p method approaches to generalized Cohen-Macaulay rings
广义 Cohen-Macaulay 环的特征 p 方法
基本信息
- 批准号:17540049
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We found a partial solution to the problem of finding classes of generalized Cohen-Macaulay monomial ideals in a polynomial ring over a filed. Namely, in the joint papers with S. Goto and M. Okudaira, we introduce the notion of generalized complete intersection, which is a class of Stanley-Reisner ideals whose powers are all generalized Cohen-Macaulay, and gave the complete combinatorial characterization of these ideals, including the case that these ideals have liner resolutions. See the first and the second paper in the references.As a byproduct of the above mentioned work, we found a necessary and sufficient condition for stable monomial ideals to have minimal Taylor resolutions. Furthermore we succeeded in giving the complete description of minimal sets of generators of such ideals. See the third paper, which is a joint work with M. Okudaira. Through a joint work with J. Herzog and others, the above mentioned condition turned out to hold in much more general setting of component wise linear ideals. See the fourth paper.We also obtained some new results on local co homologies of isolated non F-rational singularities. Namely, by using the theory of USD-sequences by S. Goto and P. Schenzel and some results on Kodaira-vanishing by C. Huneke and K. E.. Smith, we gave a clean representation of the local cohomology modules in terms of tight closures and limit closures of parameters. Apart from some immediate consequences on vanishing and non-vanishing of the cohomollogies, we consider how the tight closure of zero in the highest local co homology controls the vanishing and non-vanishing of the lower cohomologies. We succeeded in obtaining some result on the next highest local co homology of an isolated singularity.
我们找到了在域上的多项式环中寻找广义科恩-麦考利单项理想类问题的部分解决方案。即在与S.后藤和M. Okudaira的第二章中,我们引入了广义完全交的概念,这是一类Stanley-Reisner理想,它的幂都是广义Cohen-Macaulay,并给出了这类理想的完全组合刻画,包括这类理想有线性分解的情形.作为上述工作的一个副产品,我们得到了稳定单项理想具有极小Taylor分解的一个充要条件。此外,我们成功地给出了这种理想的生成元的极小集的完整描述。见第三篇论文,这是一个联合工作与M。奥平通过与J. Herzog和其他人的合作,上述条件被证明在更一般的分量线性理想的设置中成立。参见第四篇文章,我们还得到了孤立非F-有理奇点的局部上同调的一些新结果。即利用S.后藤和P. Schenzel的结果以及C. Huneke和K. E... Smith的方法,我们用参数的紧闭包和极限闭包给出了局部上同调模的一个简洁的表示。除了一些直接的后果消失和不消失的上同调,我们考虑如何在最高的本地上同调零的紧闭控制的消失和不消失的较低的上同调。我们成功地获得了孤立奇点的次高局部上同调的一些结果。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stanley-Reisner ideals whose powers have finite length cohomologies
Stanley-Reisner 理想,其幂具有有限长度上同调
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S. Goto;Y. Takayama
- 通讯作者:Y. Takayama
Monomial ideals with linear quotients whose Taylor resolutions are mimimal
泰勒分辨率最小的具有线性商的单项式理想
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:奥平崇貴;高山幸秀
- 通讯作者:高山幸秀
Combinatorial characterizations of generalized Cohen-Macaulay monomial ideals
- DOI:
- 发表时间:2005-03
- 期刊:
- 影响因子:0
- 作者:Yukihide Takayama
- 通讯作者:Yukihide Takayama
Generalized complete intersections
广义完全交集
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:S.Goto;M.Okudaira;Y.Takayama
- 通讯作者:Y.Takayama
Monomial ideals with linear quotients whose Taylor Resolutions are minimal
具有泰勒分辨率最小的线性商的单项式理想
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:M.Okudaira;Y.Takayama
- 通讯作者:Y.Takayama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAYAMA Yukihide其他文献
TAKAYAMA Yukihide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAYAMA Yukihide', 18)}}的其他基金
study of commutative rings of positive characteristic using vector bundles
利用向量丛研究正特征交换环
- 批准号:
22540056 - 财政年份:2010
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on multiplier ideals from the point of view of commutative ring theory
从交换环理论角度研究乘子理想
- 批准号:
19540059 - 财政年份:2007
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical study of Constructive Concurrent and Distributed Programm system
构造性并发分布式程序系统的数学研究
- 批准号:
09640302 - 财政年份:1997
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Standard Grant














{{item.name}}会员




