Geometry of Higher Dimensional Black Hole and Compact Einstein Space
高维黑洞几何与紧致爱因斯坦空间
基本信息
- 批准号:17540262
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We aimed to study compact Einstein manifolds and Riemannian manifolds of special holonomy from a view point of black hole.These geometries are physically interpreted as higher dimensional gravitational instantons, and deeply related to new geometries expected by string theory. Especially, compact Sasaki-Einstein geometry has been extensively studied in connection with AdS/CFT correspondence.1. We have constructed a new infinite series of Einstein metrics on sphere bundles. These metrics appear as a certain limit of 5-dimensional AdS Kerr black holes. In the special case, the metric gives a homogeneous Sasaki-Einstein metric. Our construction is a higher dimensional version of the method of Page, which gave an inhomogeneous Einstein metric on the first del Pezzo surface.2. Recently, D3 branes at the tip of toric Calabi-Yau cones have been extensively studied from a view point of AdS/CFT correspondence. It is natural to consider the deformations of cone metrics in order to explore non-conformal field theories. We have constructed an explicit non-singular complete toric Calabi-Yau metric using the local solution found by Chen, Lu and Pope. This metric gives a new supergravity solution representing D3 branes.3. We have constructed a new infinite family of quiver gauge theories which blow down to the quiver gauge theories found by Hannany, Kazakopoulos and Wecht, recently. This family includes a quiver gauge theory for the third del Pezzo surface. We have shown, using volume minimaization, that these theories generically have irrational R-charges. The AdS/CFT correspondence implies that the dual geometries are irregular toric Sasaki-Einstein manifolds.4. We studied stationary and axially symmetric solitonic solutions of five dimensional vacuum Einstein equations by using the inverse scattering method. From five dimensional Minkowski space-time as a seed, we reproduced a black ring solution with a rotating two sphere which was found by Mishima and Iguchi recently.
我们的目标是从黑洞的角度研究紧致的Einstein流形和特殊完整性的Riemann流形,这些几何在物理上被解释为高维引力瞬子,并且与弦理论所期望的新几何有着深刻的联系。特别是,紧凑的Sasaki-Einstein几何已被广泛研究与AdS/CFT对应。我们构造了一个新的球丛上的Einstein度规无穷级数。这些度规表现为5维AdS Kerr黑洞的某种极限。在特殊情况下,该度规给出齐次的Sasaki-Einstein度规。我们的构造是Page方法的高维版本,Page方法给出了第一del Pezzo曲面上的非齐次Einstein度量。最近,从AdS/CFT对应的观点出发,人们对复曲面Calabi-Yau锥顶端的D3膜进行了广泛的研究。为了探索非共形场论,考虑锥度规的变形是很自然的。利用Chen,Lu和Pope给出的局部解,我们构造了一个显式的非奇异完全环面Calabi-Yau度量.这个度规给出了一个新的代表D3膜的超引力解。我们构造了一个新的无限族的超规范理论,它与Hannany,Kazakopoulos和Wecht最近发现的超规范理论是一致的。这个族包括第三del Pezzo曲面的规范理论。我们已经表明,使用体积极小化,这些理论一般有无理R-收费。AdS/CFT对应意味着对偶几何是不规则复曲面Sasaki-Einstein流形。利用逆散射方法研究了五维真空爱因斯坦方程的定态和轴对称孤子解。以五维Minkowski时空为种子,再现了三岛和井口最近发现的双球旋转的黑环解.
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vacuum Solutions of Five Dimensional Einstein Equations
五维爱因斯坦方程的真空解
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:吉澤香奈子;高柳和雄;T.Oota;N.Hamamoto;T.Oota;S.Tomizawa
- 通讯作者:S.Tomizawa
Seven-dimensional Einstein Manifolds fron Tod-Hitchin Geometry
托德-希钦几何的七维爱因斯坦流形
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:吉澤香奈子;高柳和雄;T.Oota;N.Hamamoto;T.Oota;S.Tomizawa;M.Sakaguchi;M.Sakaguchi;T.Oota;T.Oota;安井 幸則;M.Sakaguchi;T.Oota;Y.Yasui;M.Sakaguchi
- 通讯作者:M.Sakaguchi
Toric Sasaki-Einstein manifolds and Heun equations
Toric Sasaki-Einstein 流形和 Heun 方程
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Oota;Y.Yasui
- 通讯作者:Y.Yasui
Explicit toric metric on resolved Calabi–Yau cone
- DOI:10.1016/j.physletb.2006.06.021
- 发表时间:2006-05
- 期刊:
- 影响因子:4.4
- 作者:T. Oota;Y. Yasui
- 通讯作者:T. Oota;Y. Yasui
NOTES ON FIVE-DIMENSIONAL KERR BLACK HOLES
- DOI:10.1142/s0217751x06028837
- 发表时间:2005-02
- 期刊:
- 影响因子:1.6
- 作者:M. Sakaguchi;Y. Yasui
- 通讯作者:M. Sakaguchi;Y. Yasui
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YASUI Yukinori其他文献
YASUI Yukinori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YASUI Yukinori', 18)}}的其他基金
Geometry of Black Hole and Sasaki-Einstein Metric
黑洞几何和佐佐木-爱因斯坦度量
- 批准号:
19540304 - 财政年份:2007
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Cosmic powerhouses: The birth, death, and legacy of black hole jets
宇宙动力源:黑洞喷流的诞生、死亡和遗产
- 批准号:
DP240102970 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Projects
Development of Efficient Black Hole Spectroscopy and a Desktop Cluster for Detecting Compact Binary Mergers
开发高效黑洞光谱和用于检测紧凑二元合并的桌面集群
- 批准号:
2412341 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
Numerical investigations of the inner regions of black hole accretion discs
黑洞吸积盘内部区域的数值研究
- 批准号:
2738304 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Studentship
Simulations of neutron star-black hole mergers
中子星-黑洞合并的模拟
- 批准号:
2789433 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Studentship
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Collaborative Research: Reverberation Mapping with Multi-Object Spectroscopy - from Sloan Digital Sky Survey Reverberation Mapping to the Black Hole Mapper
合作研究:使用多目标光谱进行混响映射 - 从斯隆数字巡天混响映射到黑洞映射器
- 批准号:
2310211 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
CAREER: Direct Tests of Black Hole Accretion Rate Prescriptions
职业:黑洞吸积率处方的直接测试
- 批准号:
2239807 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Numerical exploration of new frontiers on primordial black hole formation
原初黑洞形成新领域的数值探索
- 批准号:
22KF0168 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The Analysis of the Black Hole Interior and Strong Cosmic Censorship
黑洞内部分析和强大的宇宙审查
- 批准号:
2247376 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant














{{item.name}}会员




