Role of the tuning parameter at magnetic quantum phase transitions
调谐参数在磁量子相变中的作用
基本信息
- 批准号:48554412
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Strongly correlated electron systems can be driven via various routes to a magnetic quantumphase transition (QPT) occurring for temperature T → 0. The most extensively studied routeto quantum criticality in f-electron systems is the competition between RKKY interaction andKondo effect that can be affected by different tuning parameters, such as hydrostaticpressure, chemical doping, or external magnetic field. Here the system CeCu6-xAux isprototypical and thus has been investigated thoroughly. These investigations have led to thediscovery of a new type of quantum criticality not explicable in terms of the “conventional”Hertz-Millis-Moriya approach. More recently, we showed that the tuning parameter plays akey role in determining the scaling functions of the critical fluctuations that can be determined by inelastic neutron scattering. These findings have prompted new important questions to be addressed in this project. Do the different scaling functions signal a complex phase diagram for T → 0 ? Are there “subdominant” effects that determine quantum criticality? For instance, the strength of the Kondo effect can be affected by crystalline electric field excitations and/or magnetic anisotropies. This issue will be studied with the isostructural antiferromagnets CeAu2Ge2 and CeAg2Ge2 that are promising candidates for exploring this influence. Another parameter determining the formation of a magnetic vs. non-magnetic ground state is geometrical frustration, which tends to suppress magnetic order, either globally or locally. An example of the latter is the hexagonal antiferromagnet CePdAl. Finally, the role of disorder will be investigated by comparing the low temperature properties of CeCu6-xAux with those of Ce1-y LayCu6 and Ce1-y LayCu5Au.
强相关电子系统可以通过各种途径驱动到温度T→0时发生的磁量子相变(QPT)。在f电子系统中,最广泛研究的量子临界路线是RKKY相互作用和近藤效应之间的竞争,这种竞争可能受到不同调谐参数的影响,例如静水压力,化学掺杂或外部磁场。在这里,CeCu6-xAux系统是典型的,因此已经进行了彻底的研究。这些研究导致了一种新型量子临界的发现,这种量子临界不能用“传统的”赫兹-米利斯-莫里亚方法来解释。最近,我们证明了调谐参数在确定临界波动的标度函数中起着关键作用,而临界波动可以由非弹性中子散射确定。这些发现引发了本项目需要解决的新的重要问题。不同的比例函数是否表示T→0的复杂相图?是否存在决定量子临界性的“亚显性”效应?例如,近藤效应的强度可以受到晶体电场激励和/或磁各向异性的影响。这一问题将用同结构反铁磁体CeAu2Ge2和CeAg2Ge2进行研究,它们是探索这种影响的有希望的候选者。另一个决定磁性基态与非磁性基态形成的参数是几何挫折,它倾向于抑制磁性秩序,无论是全局还是局部。后者的一个例子是六方反铁磁体CePdAl。最后,通过比较CeCu6-xAux与Ce1-y LayCu6和Ce1-y LayCu5Au的低温性能,探讨无序对CeCu6-xAux的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suppression of ferromagnetism of CeTiGe 3 by V substitution
- DOI:10.1103/physrevb.88.165123
- 发表时间:2013-10
- 期刊:
- 影响因子:3.7
- 作者:W. Kittler;V. Fritsch;F. Weber;G. Fischer;D. Lamago;G. André;H. Löhneysen
- 通讯作者:W. Kittler;V. Fritsch;F. Weber;G. Fischer;D. Lamago;G. André;H. Löhneysen
Evolution of the magnetic structure in CeCu(5.5)Au(0.5) under pressure towards quantum criticality.
CeCu(5 5)Au(0 5) 中磁性结构在量子临界压力下的演化
- DOI:10.1103/physrevlett.110.096404
- 发表时间:2013
- 期刊:
- 影响因子:8.6
- 作者:A. Hamann;O. Stockert;V. Fritsch;K. Grube;A. Schneidewind;H. v. Löhneysen
- 通讯作者:H. v. Löhneysen
Magnetization and specific heat of CePd1 − xNixAl
CePd1âââxNixAl 的磁化强度和比热
- DOI:10.1002/pssb.201200931
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:V. Fritsch;C.-L. Huang;N. Bagrets;K. Grube;S. Schumann;H. v. Löhneysen
- 通讯作者:H. v. Löhneysen
Magnetic fluctuations at a field-induced quantum phase transition.
- DOI:10.1103/physrevlett.99.237203
- 发表时间:2007-12
- 期刊:
- 影响因子:8.6
- 作者:Oliver Stockert;M. Enderle;H. Löhneysen
- 通讯作者:Oliver Stockert;M. Enderle;H. Löhneysen
Magnetic phase diagram of CeAu2Ge2: High magnetic anisotropy due to crystal electric field
- DOI:10.1103/physrevb.84.104446
- 发表时间:2011-09-30
- 期刊:
- 影响因子:3.7
- 作者:Fritsch, V.;Pfundstein, P.;v Loehneysen, H.
- 通讯作者:v Loehneysen, H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Hilbert von Löhneysen, since 2/2015其他文献
Professor Dr. Hilbert von Löhneysen, since 2/2015的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of performance parameter optimization tools for automatic tuning
自动调优性能参数优化工具开发
- 批准号:
23K11126 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyper-fast hyper-parameter tuning for the next generation of machine learning
下一代机器学习的超快速超参数调整
- 批准号:
RGPIN-2022-03669 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Emergence of locomotion through autonomous parameter tuning
通过自主参数调整实现运动
- 批准号:
20K03730 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parameter-Free Stochastic Gradient Descent: Fast, Self-Tuning Algorithms for Training Deep Neural Networks
无参数随机梯度下降:用于训练深度神经网络的快速自调整算法
- 批准号:
547242-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
A sample selection model with a monotone selection correction function
具有单调选择校正功能的样本选择模型
- 批准号:
19K13666 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of high fidelity, parameter tuning-free rendering method with error estimation
开发具有误差估计的高保真、免参数调整渲染方法
- 批准号:
18H03348 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic Parameter Tuning for Reinforcement Learning Algorithms
强化学习算法的自动参数调整
- 批准号:
511711-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




