DeMoCo: Developer-Centered, Neural Models of Code
DeMoCo:以开发人员为中心的神经代码模型
基本信息
- 批准号:492507603
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neural software analysis learns predictive models from large code corpora to address challenging software engineering tasks. It has been gaining momentum over recent years, complementing and sometimes even outperforming traditional program analysis. At the core of these techniques are neural models of code, i.e., deep learning models that reason about programs and their properties to make predictions useful to developers. Unfortunately, current neural models of code are mostly driven by what data is easily available, e.g., reading thousands of source code files from the first to the last token each, and they make predictions that are difficult to understand for humans, e.g., by classifying an entire method as buggy without further explanation. As a result, many current techniques achieve impressive accuracy but still remain of limited use to developers. This proposal puts the human developer into the center of neural models of code, shifting from a data-centered paradigm to a developer-centered paradigm. Concretely, we plan to pursue three strands of research, which will (i) increase our understanding of how human reasoning and neural reasoning about programs relate to each other, (ii) design neural models of code that imitate how developers reason about and explore code, and (iii) create models that not only predict properties of code but also explain the predictions to developers. Developer-centered neural models of code will be potentially applicable in a wide spectrum software engineering tasks. As concrete examples, this proposal will apply them to bug detection and fault localization.
神经软件分析从大型代码语料库中学习预测模型,以解决具有挑战性的软件工程任务。近年来,它的势头一直在增强,它补充了传统的程序分析,有时甚至超过了传统的程序分析。这些技术的核心是代码的神经模型,即对程序及其属性进行推理以使预测对开发人员有用的深度学习模型。不幸的是,当前的代码神经模型主要是由容易获得的数据驱动的,例如,从第一个令牌到最后一个令牌每个读取数千个源代码文件,并且它们做出人类难以理解的预测,例如,通过将整个方法归类为有错误而没有进一步解释。因此,目前的许多技术都达到了令人印象深刻的精确度,但对开发人员的使用仍然有限。该建议将人类开发人员置于代码神经模型的中心,从以数据为中心的范例转变为以开发者为中心的范例。具体地说,我们计划进行三个方面的研究,这将(I)增加我们对人类推理和关于程序的神经推理如何相互关联的理解,(Ii)设计模仿开发人员如何推理和探索代码的代码的神经模型,以及(Iii)创建不仅预测代码属性而且向开发人员解释预测的模型。以开发人员为中心的神经模型的代码将潜在地适用于广泛的软件工程任务。作为具体的例子,该提案将把它们应用于错误检测和故障定位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Pradel其他文献
Professor Dr. Michael Pradel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Pradel', 18)}}的其他基金
Perf4JS: Automatically Fixing Performance Problems in Real-World JavaScript Applications
Perf4JS:自动修复现实 JavaScript 应用程序中的性能问题
- 批准号:
383433544 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
ConcSys: Reliable and Efficient Complex, Concurrent Software Systems
ConcSys:可靠且高效的复杂并发软件系统
- 批准号:
255842496 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
QPTest: Automated Testing of Quantum Computing Platforms
QPTest:量子计算平台的自动化测试
- 批准号:
516334526 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
LExecution: Learning to Guide and Analyze Program Executions
LExecution:学习指导和分析程序执行
- 批准号:
526259073 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
CAREER: A Holistic Developer-Centered Approach to Enhance Privacy for Data-Driven Applications
职业:以开发人员为中心的整体方法来增强数据驱动应用程序的隐私
- 批准号:
2238047 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Cultural Masterplanning: New Methods for Developer-led Urban Regeneration
文化总体规划:开发商主导的城市复兴新方法
- 批准号:
AH/X005283/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
SBIR Phase I: The Development of an Artificial Analysis (AI) Static Code Analysis Platform to Increase Software Developer Productivity
SBIR 第一阶段:开发人工分析 (AI) 静态代码分析平台以提高软件开发人员的工作效率
- 批准号:
2318738 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: DASS: Developer Implementation of Privacy in Software Systems
合作研究:DASS:开发人员在软件系统中实施隐私
- 批准号:
2217771 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
DOT: Software helping developer teams increase performance and wellbeing by analysing productivity and collaboration data
DOT:通过分析生产力和协作数据帮助开发团队提高绩效和福祉的软件
- 批准号:
10017654 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Multidimensional mobile app security analysis platform technology based on developer trend information
基于开发者趋势信息的多维移动应用安全分析平台技术
- 批准号:
22K12035 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Developer Recommendation Tool for Lock Contention Faults
锁争用故障开发者推荐工具
- 批准号:
575163-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: DASS: Developer Implementation of Privacy in Software Systems
合作研究:DASS:开发人员在软件系统中实施隐私
- 批准号:
2217772 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quality and Developer Productivity Enhancements for Cloud-Native Applications via Fault Analysis & Localization with Machine Learning
通过故障分析提高云原生应用程序的质量和开发人员生产力
- 批准号:
558283-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
CAREER: Whole-Kernel Analysis Against Developer- and Compiler-Introduced Errors
职业:针对开发人员和编译器引入的错误进行全内核分析
- 批准号:
2045478 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




