Very high cycle fatigue behaviour of nanostructured bainitic steels
纳米结构贝氏体钢的极高循环疲劳行为
基本信息
- 批准号:493003593
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research project deals with the failure of nanobainitic steels under very high cycle fatigue (VHCF). Nanobainitic steels are a new class of steels with the potential for high fatigue strength even at very long lifetimes.In general, it can be observed for high-strength steels at very long fatigue loads that the steels fail even at loads below the classical fatigue strength, which was determined for an ultimate number of cycles of 10 million. This late failure is very often accompanied by a changed morphology of the fatigue fracture surface: in the crack initiation area, which in the case of high-strength steels is very often located at non-metallic inclusions, rougher surfaces occur than in the case of shorter lifetimes. This rougher surface is accompanied by a locally refined grain structure, the so-called fine granular area (FGA), which only has grain sizes below 100 nm and is therefore much finer than the original microstructure. This grain refinement is accompanied by a reduction in the threshold value of the stress intensity factor for crack propagation, which, according to the applicant's hypothesis, causes the reduction in fatigue strength.Nanobainitic steels with their hierarchical microstructure show alternating ferritic and austenitic lamellae as smallest microstructural elements, which have a lamella thickness in the range of a few 10 nm and cause a very high static strength of this steel state. So far it has not been investigated whether this fine microstructure is stable under VHCF loadings and thus does not allow FGA formation, which could justify the insensitivity of this high-strength steel class to VHCF failure at reduced stress levels. Therefore, two chemically different nanobainitic steels will be investigated in the project with regard to their VHCF behaviour in two heat treatment conditions each with different fine lamella thicknesses. Besides fatigue testing, the focus here is on the characterisation of the fracture surfaces with regard to possible FGA formation. Depending on the results of this work planned for a first funding period, it will then be possible in a possible second funding period to investigate in more detail which microstructural structural constituents are particularly favourable to increased stability against VHCF loading, whereby more resilient and thus more sustainable steel states could be produced for components. In addition to findings on the further development of steel, the applicant also hopes to gain new insights into the conditions under which FGA are formed, which are still the subject of controversial discussion.
该研究项目涉及纳米贝氏体钢在超高周疲劳(VHCF)下的失效。纳米贝氏体钢是一种新型钢,即使在很长的寿命下也具有很高的疲劳强度。通常,可以观察到高强度钢在很长的疲劳载荷下,即使在低于经典疲劳强度的载荷下也会失效,该疲劳强度是在1000万次循环的极限次数下确定的。这种后期失效通常伴随着疲劳断裂表面形态的改变:在裂纹萌生区域中,在高强度钢的情况下,裂纹萌生区域通常位于非金属夹杂物处,与寿命较短的情况相比,出现更粗糙的表面。这种粗糙的表面伴随着局部细化的晶粒结构,即所谓的细颗粒区域(FGA),其晶粒尺寸仅低于100 nm,因此比原始微观结构细得多。这种晶粒细化伴随着裂纹扩展的应力强度因子的阈值的降低,根据申请人的假设,这导致疲劳强度的降低。具有分级显微组织的纳米贝氏体钢显示交替的铁素体和奥氏体层片作为最小的显微组织元素,其具有在几个10纳米范围内的薄片厚度,并导致该钢状态的非常高的静强度。到目前为止,尚未研究这种精细微观结构在VHCF载荷下是否稳定,从而不允许形成FGA,这可以证明这种高强度钢类别在降低的应力水平下对VHCF失效不敏感。因此,两种化学性质不同的纳米贝氏体钢将在该项目中研究其在两种热处理条件下的VHCF行为,每种热处理条件下具有不同的细片层厚度。除了疲劳测试,这里的重点是关于可能的FGA形成的断裂表面的表征。根据第一个资助期计划的这项工作的结果,在可能的第二个资助期,将有可能更详细地调查哪些微观结构的结构成分特别有利于提高对VHCF载荷的稳定性,从而可以为部件生产更有弹性,从而更可持续的钢状态。除了关于钢的进一步发展的发现外,申请人还希望获得对FGA形成条件的新见解,这仍然是有争议的讨论主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Eberhard Kerscher其他文献
Professor Dr. Eberhard Kerscher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Eberhard Kerscher', 18)}}的其他基金
Influence of ultrasound on the strain hardening behaviour of metallic materials
超声波对金属材料应变硬化行为的影响
- 批准号:
405225776 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Metallic glasses made by selective laser melting (SLM): structuring, surface treatment and mechanical properties
通过选择性激光熔化 (SLM) 制造的金属玻璃:结构、表面处理和机械性能
- 批准号:
248307555 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Influence of stress conditions in roller bearings on the damage mechanism of White Etching cracks (WEC)
滚子轴承应力条件对白蚀裂纹 (WEC) 损伤机制的影响
- 批准号:
234926672 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Rissinitiierung bei VHCF: Aufklärung relevanter Schädigungsmechanismen an 100Cr6
VHCF 中的裂纹萌生:阐明 100Cr6 上的相关损伤机制
- 批准号:
172849613 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Development of a grey-box model to understand and predict wear of coated cutting tools during turning
开发灰盒模型以了解和预测车削过程中涂层切削刀具的磨损
- 批准号:
521380776 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
α-酮戊二酸调控ACMSD介导犬尿氨酸通路代谢重编程在年龄相关性听力损失中的作用及机制研究
- 批准号:82371150
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
宿主因子DHX9促进HBV复制的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
hMTR4对细胞周期的调控机制及生物学意义
- 批准号:32000494
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
动粒亚基CENP-H/I/K对着丝粒特异识别与动粒组装新机制的研究
- 批准号:32000496
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
磷酸戊糖途径调节Aurora-A激酶活性及分裂进程的机制研究
- 批准号:32000528
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
肿瘤细胞分裂期NADPH的动态变化、调控机制及功能研究
- 批准号:92057104
- 批准年份:2020
- 资助金额:78.0 万元
- 项目类别:重大研究计划
LncRNA XLOC_004924通过增强cyclin D1稳定性促进胃肿瘤细胞增殖的作用和机制研究
- 批准号:32000495
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
用一种新的方法研究Bub1调控有丝分裂的分子机制
- 批准号:31970666
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
The initiation and arrest mechanisms of small internal cracks in very high cycles fatigue regime in titanium alloys
钛合金高周疲劳状态下细小内部裂纹的萌生和阻止机制
- 批准号:
22KJ0059 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Improved fatigue strength of high-strength steels fabricated by additive manufacturing in the very high cycle regime
通过增材制造在极高循环状态下提高高强度钢的疲劳强度
- 批准号:
22H01356 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of Very High Cycle Fatigue Property of CFRP Laminate by using Ultrasonic Fatigue Testing Machine
超声波疲劳试验机研究CFRP层压板的超高周疲劳性能
- 批准号:
19K04071 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Damage prediction of very high cycle fatigue of high-capacity battery electrodes based on multi-scale modeling
基于多尺度建模的大容量电池电极极高循环疲劳损伤预测
- 批准号:
19K04078 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical and experimental investigations on stress redistributions of fatigue loaded concrete structures in the very high-cycle fatigue range
超高周疲劳范围内疲劳荷载混凝土结构应力重新分布的数值和实验研究
- 批准号:
417209030 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Elucidation of the mechanism of very high cycle fatigue and the development of its evaluation method based on synchrotron radiation micro/nano- CT
基于同步辐射微纳CT的超高周疲劳机理阐明及其评价方法开发
- 批准号:
18H03748 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Corrosion fatigue in biogenic fuels in the very high cycle fatigue regime
极高循环疲劳状态下生物燃料的腐蚀疲劳
- 批准号:
244527137 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Development of Accelerated Testing Method for Very High Cycle Fatigue of CFRP
CFRP超高周疲劳加速试验方法的研制
- 批准号:
25420011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fatigue Strength of Welded Joints in Very High Cycle Fatigue Region
极高周疲劳区域焊接接头的疲劳强度
- 批准号:
24656277 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Visualization of interior originating small cracks in high strength titanium alloy and the clarification of very high cycle fatigue mechanisms
高强度钛合金内部起源小裂纹的可视化和极高循环疲劳机制的阐明
- 批准号:
24246024 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)