Tractable Bayesian algorithms for intractable Bayesian problems

用于解决棘手贝叶斯问题的易处理贝叶斯算法

基本信息

  • 批准号:
    DE160100741
  • 负责人:
  • 金额:
    $ 26.78万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Early Career Researcher Award
  • 财政年份:
    2016
  • 资助国家:
    澳大利亚
  • 起止时间:
    2016-03-01 至 2019-02-28
  • 项目状态:
    已结题

项目摘要

This project seeks to develop computationally efficient and scalable Bayesian algorithms to estimate the parameters of complex models and ensure inferences drawn from the models can be trusted. Bayesian parameter estimation and model validation procedures are currently computationally intractable for many complex models of interest in science and technology. These include biological processes such as the efficacy of heart disease, wound healing and skin cancer treatments. Potential outcomes of the project include new algorithms to significantly economise computations and improved understanding of the mechanisms of experimental data generation. Improved models of wound healing, skin cancer growth and heart physiology supported by these algorithms could improve population health.
该项目旨在开发计算效率高、可扩展的贝叶斯算法,以估计复杂模型的参数,并确保从模型中得出的推论是可信的。贝叶斯参数估计和模型验证程序是目前难以计算的许多复杂的模型感兴趣的科学和技术。这些包括生物过程,如心脏病、伤口愈合和皮肤癌治疗的功效。该项目的潜在成果包括显著节省计算的新算法和改进对实验数据生成机制的理解。这些算法支持的伤口愈合、皮肤癌生长和心脏生理学模型的改进可以改善人口健康。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof Christopher Drovandi其他文献

Prof Christopher Drovandi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof Christopher Drovandi', 18)}}的其他基金

Scalable and Robust Bayesian Inference for Implicit Statistical Models
隐式统计模型的可扩展且稳健的贝叶斯推理
  • 批准号:
    FT210100260
  • 财政年份:
    2022
  • 资助金额:
    $ 26.78万
  • 项目类别:
    ARC Future Fellowships
Advances in Sequential Monte Carlo Methods for Complex Bayesian Models
复杂贝叶斯模型的顺序蒙特卡罗方法的进展
  • 批准号:
    DP200102101
  • 财政年份:
    2020
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Discovery Projects

相似国自然基金

多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
  • 批准号:
    82173628
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
  • 批准号:
    42072326
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
  • 批准号:
    51875209
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
  • 批准号:
    U1830105
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
  • 批准号:
    41601345
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
  • 批准号:
    81673274
  • 批准年份:
    2016
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
  • 批准号:
    81403276
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
  • 批准号:
    71302080
  • 批准年份:
    2013
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
  • 批准号:
    51274089
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
Bayesian实物期权及在信用风险决策中的应用
  • 批准号:
    71071027
  • 批准年份:
    2010
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
  • 批准号:
    2890421
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Studentship
New algorithms for Bayesian Computation
贝叶斯计算的新算法
  • 批准号:
    2310788
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
  • 批准号:
    10714225
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
developing and validating advanced Bayesian optimization algorithms
开发和验证先进的贝叶斯优化算法
  • 批准号:
    2885563
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Studentship
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
  • 批准号:
    10730714
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
  • 批准号:
    10563598
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了