加群の変形と特異点
模块变形和奇点
基本信息
- 批准号:07210245
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
昨年度より引き続き独立特異点(特に有理二重点)上の加群の半普遍変形、特に普遍族を具体的に構成することについて研究している。A型の有理二重点の場合には反射的加群の半普遍変形の完全な記述が得られた。つまり、半普遍変形空間の座標環の構造がわかり、生成元と関係式による普遍族の構成ができた。有理二重点の場合リ一環のdominant weightに対応して加算無限個存在する反射的加群それぞれの半普遍変形空間は、もちろん有限次元であるが、それらを変形による順序関係で関係づけていってできる有限次元空間(特異点)の極限のようなものを考えるのは自然であろう。そして、A型の場合には、Ginzburgのいう無限次元べき零多様体がそれにあたっていることがわかった。そこには何か理論的裏付けがあることが期待される。有理二重点上の半普遍変形空間の被約部分はQuiver varietyのはずであるが、そもそも変形空間は被約でないこと、特異点を変形させた場合の変形空間の変形の様子が、A型の場合に比較してみると異なっていることなどから、ALE空間上のインスタントンのモデュライと関連はあっても、全く同じものを扱っているわけではないと思うようになった。他の場合にも同様の方法により普遍続の構成を考えているが、やや発見的な方法であるため、もう少し理論的な理解が必要であると思われる。そして、より一般的な場合を扱うための理論的基準として、独立特異点上の加群の半普遍変形の代数化についても研究を開始した。
In the past year, the study of semi-universal and special universal groups on independent and special points (special and rational two points) has been carried out. A complete description of the semi-universal shape of the additive group of rational double points in type A is obtained. The structure of coordinate ring in semi-universal shape space, the structure of universal family in generator relation In the case of rational two points, the dominant weight of a ring corresponds to the addition of infinite existence, and the addition group of reflections corresponds to the semi-universal shape space, the finite dimension space, and the order relationship between the finite dimension space and the singular point. In the case of type A, Ginzburg has infinite dimensions. The theory of The reduced part of semi-universal variable space on rational two points is opposite to Quiver variety. The reduced part of variable space on rational two points is opposite to Quiver variety. The reduced part of variable space on special points is opposite to Quiver variety. The reduced part of variable space on special points is opposite to Quiver variety. The reduced part of variable space on special points is opposite to Quiver variety. The reduced part of variable space on A type is opposite to Quiver variety. The reduced part of variable space on rational two points is opposite to Quiver variety. The reduced part of variable space on special points is opposite to Quiver variety. The reduced part of variable space on A type is opposite to Quiver variety. The reduced part of variable space on rational two points is opposite to Quiver variety. The reduced part of variable space on A type is opposite to Quiver variety. The reduced part of variable space on rational two points is opposite to Quiver variety. The reduced part of variable space is opposite to Quiver variety. The reduced part of variable space is opposite to Quiver variety. In other cases, the method of the same kind is necessary for the understanding of the theory. The study of the theoretical basis of the general situation, the addition of groups on independent special points, and the algebraic transformation of semi-universal forms began.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akira Ishii: "Semi-universal family of reflexive modules over a rational double point of type A" Proc. Taniguchi Symp., Moduli of Vector Bundles. 65-77 (1996)
Akira Ishii:“A 型有理双点上的自反模块的半通用系列”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
石井 亮其他文献
エージェントの視線動作にユーザが抱く 違和感予測モデルの提案
提出一个模型来预测用户因代理的注视行为而感到的不适
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
松元 崇裕,後藤 充裕;石井 亮;渡部 智樹;山田 智広;今井 倫太;水丸和樹,坂本大介,小野哲雄;Mitsuhiko Kimoto;Takeshi KONNO;中臺 一博;Kazuhiro NAKADAI;大塚 洋平 - 通讯作者:
大塚 洋平
ナッジ効果を用いた運転支援システムの提示タイミングの決定
利用微移效应确定驾驶支持系统的呈现时机
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
松元 崇裕,後藤 充裕;石井 亮;渡部 智樹;山田 智広;今井 倫太;水丸和樹,坂本大介,小野哲雄;Mitsuhiko Kimoto;Takeshi KONNO;中臺 一博;Kazuhiro NAKADAI;大塚 洋平;岩月 道生;Kouichi Enami;Kazuhiro Nakadai;榎波 晃一 - 通讯作者:
榎波 晃一
Brane tilings and crepant resolutioins of some three-dimensional toric singularities
一些三维环面奇点的膜平铺和绉纹分辨率
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
北臺如法;隅広秀康;Akira Ishii;Akira Ishii;石井 亮;石井 亮;Akira Ishii - 通讯作者:
Akira Ishii
L-functions for $GSp(2)\times GL(2)$ : archimedean theory and applications
$GSp(2) imes GL(2)$ 的 L 函数:阿基米德理论和应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
北臺如法;隅広秀康;Akira Ishii;Akira Ishii;石井 亮;石井 亮;Akira Ishii;Akira Ishii;北臺如法;石井 亮;石井 亮;石川佳弘;石川佳弘;石川 佳弘;Taku Ishii and Tomonori Moriyama;安田正大;Shinichi Kato and Keiji Takano;石川佳弘;Seidai Yasuda;Tomonori Moriyama - 通讯作者:
Tomonori Moriyama
2次実解析的Siegel保型形式から定義されるL関数について
关于二次实解析 Siegel 自守形式定义的 L 函数
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
北臺如法;隅広秀康;Akira Ishii;Akira Ishii;石井 亮;石井 亮;Akira Ishii;Akira Ishii;北臺如法;石井 亮;石井 亮;石川佳弘;石川佳弘;石川 佳弘;Taku Ishii and Tomonori Moriyama;安田正大;Shinichi Kato and Keiji Takano;石川佳弘;Seidai Yasuda;Tomonori Moriyama;石川佳弘;森山知則 - 通讯作者:
森山知則
石井 亮的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('石井 亮', 18)}}的其他基金
頭頸部癌化学放射線療法における細菌叢変化およびシンバイオティクス製剤の有用性
细菌菌群变化和合生制剂在头颈癌放化疗中的作用
- 批准号:
24K19763 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
McKay correspondence and derived category
麦凯对应及派生类别
- 批准号:
19K03444 - 财政年份:2019
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
超準的手法を用いた代数多様体の特異点の研究
使用超实体方法研究代数簇的奇点
- 批准号:
24KJ1040 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
導波モード選択的導波路カプラ設計論と非エルミート光学系における特異点との関係解明
阐明非厄米光学系统中波导模式选择波导耦合器设计理论与奇点之间的关系
- 批准号:
24K08283 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
不確定特異点を持つD-加群と特異点理論の研究
不确定奇点D模及奇点理论研究
- 批准号:
24K06681 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
幾何学的特異点論の開発と応用
几何奇点理论的发展与应用
- 批准号:
24K06700 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
特異点光波による光誘起ナノスケール超伝導の創製
利用奇点光波创建光致纳米级超导性
- 批准号:
23K23246 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
特異点を持つ超曲面に対する変分問題及び幾何解析と離散曲面論の新展開
奇点超曲面的变分问题与几何分析及离散曲面理论的新进展
- 批准号:
23K20212 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
特異点の幾何学的不変量と高次元波面・混合型超曲面への応用
奇点的几何不变量及其在高维波前和混合超曲面中的应用
- 批准号:
24K06709 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新規多次元振動分光による反応ポテンシャル特異点の探究
使用新型多维振动光谱探索反应势奇点
- 批准号:
24K01444 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
代数幾何学の特異点論による機械学習理論の解析およびその応用
利用代数几何奇点理论分析机器学习理论及其应用
- 批准号:
24K15114 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
混標数の特異点論とそのF特異点論・双有理幾何学への応用
混合特性奇点理论及其在F奇点理论和双有理几何中的应用
- 批准号:
23K22383 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)