Elucidating Fingerprints – Towards a Holistic Explanatory Toolbox for Molecular Machine Learning
阐明指纹 â 走向分子机器学习的整体解释工具箱
基本信息
- 批准号:497089464
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The central point of this proposal is the development of out-of-the-box for interpretable and Explainable Molecular Machine Learning on a structural level. Within this project broadly utilized molecular representations will be developed, adapted and used to train highly robust but accurate models (e.g. Gradient Boost algorithms). Starting from these models an open-source software pipeline will be employed to map feature importance, influence, interdependencies, as well as model confidences back to the molecular structure giving trained chemists a plain handle for molecular and reaction design. An important part of this work will involve the development of visualization based on analytic results that provide a high degree of accuracy on the one hand and are easy to understand for any scientist working in the field of molecular science on the other hand. Those tools shall be usable to investigate and improve underlaying datasets as well as for molecular design. In addition to the coloration and visualization of individual molecules, methods of statistical evaluation regarding the general influence of functional groups should be developed, so that rules for further reaction design can be derived. Finally, these rules should be used in the laboratory to validate the explanatory methods developed within the course of this proposal. By these objectives the proposal aims on fulfilling the following of the PPs general goals: “Application of state-of-the-art ML algorithms – Explainable AI”, “Development of (domain specific) molecular representations – Generally improved molecular representations” and “Prediction, understanding and interpretation of molecular properties – Improvement of current applications”. Within this scope a high focus lies on the interpretation and explanation models for quantitative yield prediction to find handles for a systematic improvement within this underdeveloped area of MML which also has defined as a major topic of this PP.
这项提议的中心点是在结构水平上开发可解释和可解释的分子机器学习的开箱即用的方法。在该项目中,将开发、调整和使用广泛使用的分子表示法来训练高度稳健但精确的模型(例如,梯度增强算法)。从这些模型开始,将使用开放源码软件管道将特征的重要性、影响、相互依赖以及模型置信度映射回分子结构,使训练有素的化学家对分子和反应设计有一个简单的把握。这项工作的一个重要部分将涉及基于分析结果的可视化开发,这些分析结果一方面提供高度的准确性,另一方面对于在分子科学领域工作的任何科学家来说都很容易理解。这些工具应可用于调查和改进基础数据集以及分子设计。除了单个分子的显色和可视化之外,还应该开发关于官能团的一般影响的统计评估方法,以便为进一步的反应设计得出规则。最后,应在实验室中使用这些规则来验证在本提案过程中开发的解释方法。通过这些目标,该提案旨在实现PPS的以下总体目标:“应用最先进的ML算法--可解释的人工智能”、“发展(领域特定的)分子表示法--普遍改进的分子表示法”和“预测、理解和解释分子特性--改进当前的应用”。在这一范围内,重点放在定量产量预测的解释和解释模型上,以找到在MML这一不发达领域系统改进的方法,这也被定义为本PP的一个主要主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Frank Glorius其他文献
Professor Dr. Frank Glorius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Frank Glorius', 18)}}的其他基金
Bifunktionale Katalysatoren & Duale Organokatalyse
双功能催化剂
- 批准号:
5451251 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Sterisch anspruchsvolle N-heterozyklische Carbene in der Übergangsmetallkatalyse
过渡金属催化中空间要求较高的 N-杂环卡宾
- 批准号:
5405386 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
SAFE:Synthetically Accessible Fragment Space Extensions by Machine Learning-Based Approaches
SAFE:基于机器学习的方法的综合可访问片段空间扩展
- 批准号:
497017145 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Paradigm Shift in Triplet-Triplet Energy Transfer Catalysis: Towards Earth Abundant Transition Metals and Low Photon Energies
三重态-三重态能量转移催化的范式转变:走向地球丰富的过渡金属和低光子能量
- 批准号:
404525563 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
The oceanic fingerprints on changing monsoons over South and Southeast Asia
南亚和东南亚季风变化的海洋指纹
- 批准号:
2875514 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Stellar Archeology: The Nuclear Fingerprints of Massive Stars.
恒星考古学:大质量恒星的核指纹。
- 批准号:
ST/W00321X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Nanosensor Array Platform to Capture Whole Disease Fingerprints
捕获整个疾病指纹的纳米传感器阵列平台
- 批准号:
10660707 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigation on the mechanism of visualization of latent fingerprints by fluorescence lifetime imaging
荧光寿命成像可视化潜在指纹的机制研究
- 批准号:
23K13527 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A New Intraoral Six-Degrees of Freedom Jaw Movement Tracking Method Using Magnetic Fingerprints
一种新的基于磁指纹的口内六自由度下颌运动跟踪方法
- 批准号:
23K19703 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
MPS-Ascend: Identifying the Fingerprints of Gravitational Wave Source Formation
MPS-Ascend:识别引力波源形成的指纹
- 批准号:
2212983 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
The volatile fingerprints of life - a new method to indicate the biological or non-biological sources of gas
生命的挥发性指纹——指示气体的生物或非生物来源的新方法
- 批准号:
2759212 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Characterization of volatile fingerprints and virulence determinants of Stenotrophomonas maltophilia
嗜麦芽寡养单胞菌的挥发性指纹图谱和毒力决定因素的表征
- 批准号:
574267-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Neurocognitive Fingerprints of Substance Use and Misuse in Adolescents
青少年药物使用和滥用的神经认知指纹
- 批准号:
10584683 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Machine Perception Nanosensor Array Platform to Capture Whole Disease Fingerprints of Early Stage Pancreatic Cancer
机器感知纳米传感器阵列平台可捕获早期胰腺癌的整个疾病指纹
- 批准号:
10507496 - 财政年份:2022
- 资助金额:
-- - 项目类别: