SAFE:Synthetically Accessible Fragment Space Extensions by Machine Learning-Based Approaches

SAFE:基于机器学习的方法的综合可访问片段空间扩展

基本信息

项目摘要

The overall aim of the project is the creation of predictive models enabling the extension of synthetically accessible chemical fragment spaces. A key question arising today in drug discovery, materials design and also synthetic chemistry is how to precisely map the space of synthetically accessible organic compounds with reasonable efforts. Large pharmaceutical companies as well as several large compound vendors addressed this question with the definition of synthetically accessible chemical fragment spaces. Since fragment spaces are reaction-pattern driven, the extension problem can be broken down to the prediction of building blocks compatible with a certain reaction and compatible with each other in a reaction. In the proposed project a chemoinformatics framework will be developed for the extraction of data on reaction schemes and reactants from fragment spaces. In addition, problem-specific molecular descriptors will be designed for the application in reaction predictions. Based on these data and representations, the identification of tolerated reactants will be aspired for selected reaction schemes. For this purpose, state-of-the-art machine learning models will be evaluated and trained with data from the fragment spaces and the literature. A large variety of techniques from random forests, support vector machines, gradient boosting, to neural networks will be tested for their ability to generalize from the training data. For the targeted improvement of the prediction performance, an active learning strategy will be combined with screening techniques to generate large amounts of experimental data. To achieve this goal, new convolutional screening techniques will be developed and evaluated. The predictive power of the model will be continuously validated experimentally to ensure the synthesizability of the spatial extensions. Software tools for transferring reactions identified as productive into fragment space, and an optimization scheme for grouping reactants with maximum compatibility will be developed. In the final phase of the project, trials for the partial automation of the workflow will be performed.
该项目的总体目标是创建预测模型,从而扩展可合成的化学碎片空间。当今药物发现、材料设计和合成化学中出现的一个关键问题是如何通过合理的努力精确绘制可合成的有机化合物的空间。大型制药公司以及几家大型化合物供应商通过定义可合成的化学碎片空间来解决这个问题。由于片段空间是反应模式驱动的,因此扩展问题可以分解为预测与特定反应兼容以及在反应中彼此兼容的构建块。在拟议的项目中,将开发一个化学信息学框架,用于从片段空间中提取反应方案和反应物的数据。此外,还将设计针对特定问题的分子描述符以应用于反应预测。基于这些数据和表示,将期望为选定的反应方案鉴定耐受的反应物。为此,将使用片段空间和文献中的数据来评估和训练最先进的机器学习模型。从随机森林、支持向量机、梯度提升到神经网络等多种技术都将测试其从训练数据中进行泛化的能力。为了有针对性地提高预测性能,主动学习策略将与筛选技术相结合,生成大量实验数据。为了实现这一目标,将开发和评估新的卷积筛选技术。模型的预测能力将通过实验不断验证,以确保空间扩展的可综合性。将开发用于将被识别为有效的反应转移到碎片空间的软件工具,以及用于对具有最大兼容性的反应物进行分组的优化方案。在项目的最后阶段,将进行工作流程部分自动化的试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Frank Glorius其他文献

Professor Dr. Frank Glorius的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Frank Glorius', 18)}}的其他基金

Bifunktionale Katalysatoren & Duale Organokatalyse
双功能催化剂
  • 批准号:
    5451251
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Asymmetrische Aromaten-Hydrierung
不对称芳香氢化
  • 批准号:
    5443062
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Sterisch anspruchsvolle N-heterozyklische Carbene in der Übergangsmetallkatalyse
过渡金属催化中空间要求较高的 N-杂环卡宾
  • 批准号:
    5405386
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Elucidating Fingerprints – Towards a Holistic Explanatory Toolbox for Molecular Machine Learning
阐明指纹 â 走向分子机器学习的整体解释工具箱
  • 批准号:
    497089464
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    497274830
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Paradigm Shift in Triplet-Triplet Energy Transfer Catalysis: Towards Earth Abundant Transition Metals and Low Photon Energies
三重态-三重态能量转移催化的范式转变:走向地球丰富的过渡金属和低光子能量
  • 批准号:
    404525563
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Synthetically engineered microalgae for improved gut function and human health
合成工程微藻可改善肠道功能和人类健康
  • 批准号:
    BB/Y00857X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Discovery and preclinical validation of evolution-designed, AI-discovered, synthetically printed biologic molecules for MDR-TB
针对耐多药结核病的进化设计、人工智能发现、合成印刷的生物分子的发现和临床前验证
  • 批准号:
    10071576
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Synthetically-evolved and engineered Nanobodies selective for Cb isoforms of PKA
对 PKA Cb 亚型具有选择性的合成进化和工程纳米抗体
  • 批准号:
    10525796
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Validating novel synthetically lethal vulnerabilities in lung cancer
验证肺癌中新的综合致命弱点
  • 批准号:
    2619070
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
  • 批准号:
    10412134
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Bioelectronic Sensor using Synthetically Engineered and Electroactive Bacteria for Detection of Aquatic Nutrients
使用合成工程和电活性细菌检测水生营养素的生物电子传感器
  • 批准号:
    2114041
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanism of Resistance Avoidance in Synthetically Evolved Antibacterial Peptides
合成进化抗菌肽避免耐药性的机制
  • 批准号:
    10308818
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Computational Biophysics of Synthetically Engineered Protein Nanopores
合成工程蛋白质纳米孔的计算生物物理学
  • 批准号:
    2583124
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Dynamic modelling of synthetically lethal pathways to enable the development of cancer therapeutics
综合致死途径的动态建模以促进癌症疗法的开发
  • 批准号:
    2618430
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing next-generation genomically recoded organisms to synthetically activate biomarkers for drug discovery
开发下一代基因组重新编码的生物体以合成激活药物发现的生物标志物
  • 批准号:
    10263259
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了