Coordination Funds
协调基金
基本信息
- 批准号:498555612
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The past decade has shown that a vast majority of visual computing problems admit significantly higher quality solutions if the entire processing of the visual data is learned jointly: The era of Deep Learning has largely replaced previous sequential approaches such as first designing important features for a specific task and subsequently learning to analyze or classify the data using such features. Yet, this so-called end-to-end learning paradigm considers the image data a sensor system records as the beginning of the learning pipeline. It neglects the fact that the image data itself is the result of an upstream process with many design choices in developing and dynamically adapting the sensor system, and thus still remains a sequential approach in which the sensor system is designed separate from the data processing pipeline. The goal of the "Learning to Sense" (L2S) research unit is a joint optimization for design parameters of the sensor system along with the neural network to analyze the resulting data, i.e., developing a true end-to-end machine learning methodology yielding systems that are optimized for an application specific task. Consequently, the L2S project will conduct joint fundamental research on both, making sensor systems adaptive to provide promising degrees of freedom, and on a machine learning methodology that allows for the joint optimization of the resulting sensor system and network parameters. In the long run, the L2S paradigm will provide a new methodology for the integral development of adaptive sensor systems alongside neural networks with optimal task-specific characteristics, which results in a substantially more efficient and more precise scene analysis with minimal manual inference in the sensor system design.
过去的十年已经表明,如果视觉数据的整个处理过程是联合学习的,那么绝大多数视觉计算问题都承认更高质量的解决方案:深度学习时代已经在很大程度上取代了以前的顺序方法,例如首先为特定任务设计重要特征,然后学习使用这些特征来分析或分类数据。然而,这种所谓的端到端学习范式将传感器系统记录的图像数据视为学习管道的开始。它忽略了这样一个事实,即图像数据本身是在开发和动态适应传感器系统时具有许多设计选择的上游过程的结果,因此仍然是一种顺序方法,其中传感器系统的设计与数据处理管道分开。“学习感知”(L2S)研究单元的目标是对传感器系统的设计参数和神经网络进行联合优化,以分析结果数据,即开发一种真正的端到端机器学习方法,产生针对特定应用任务进行优化的系统。因此,L2S项目将对这两个方面进行联合基础研究,使传感器系统自适应以提供有希望的自由度,并对机器学习方法进行联合优化,从而得到传感器系统和网络参数。从长远来看,L2S范式将为自适应传感器系统的整体开发提供一种新的方法,与具有最佳任务特定特征的神经网络一起,从而在传感器系统设计中以最小的人工推理实现更高效、更精确的场景分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Möller其他文献
Professor Dr. Michael Möller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Möller', 18)}}的其他基金
L2S-Training with Continuous Sensor System Parameters and Irregular Data
使用连续传感器系统参数和不规则数据进行 L2S 训练
- 批准号:
498556346 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units