Data Generation and Knowledge-based Augmentation: Continuous OME Production

数据生成和基于知识的增强:连续 OME 生产

基本信息

项目摘要

Recent advances in machine learning (ML) gave rise to novel methods for detecting anomalies and faults in chemical processes. Due to a lack of actual process data with public access, they are typically developed and bench-marked with synthetic data from dynamic process simulations. This procedure has considerable limitations since the data is idealized, and many plant anomalies are hardly predictable in simulations without experiments. The primary objective of Project B2 is to overcome these limitations and provide large amounts of experimental process data of an actual continuous chemical plant in non-anomalous and anomalous operation points. The plant of study is an existing mini-plant for the production of synthetic diesel fuels at the applicant's technology lab. It consists of a reactor, a distillation train, and recycles. The plant is equipped with industry-typical sensors (temperature, pressure, flowrate, levels, offline analyses) and advanced sensors (cameras for detecting precipitation and changes in product color). The produced experimental data is the essential base for developing the ML methods for anomaly detection in Research Area A of the Research Unit (RU). However, the generated experimental data is still too sparse for training the developed deep learning methods. Therefore, another major objective of Project B2 is to provide additional, pseudo-authentic synthesized data based on the experimental plant data and physical knowledge in mechanistic model equations. The equations consist of conservation laws for material and energy and equations describing the mixture's chemical reactions and thermodynamic properties. They will be implemented into a steady-state simulator of the plant. Parts of the equations will be selected and modified, yielding guaranteed relationships among process variables for Projects A2, A3, and A4. In collaboration with projects A4 and B1, methods to generate synthetic data sets are developed. Thereby, the results of the mechanistic process simulation of the plant are modified and augmented by noise, non-measure process variables, and dynamic interpolations using ML methods that are trained by comparing synthetic and actual experimental data. For supporting the ML methods, dynamic interpolations are produced using mechanistic Hammerstein models. The generated experimental and synthetic data will be collected, stored, and disseminated with open access in collaboration with Project B1 for the RU and the community beyond. The combined data serves as training and evaluation data for the advanced ML methods of anomaly detection (Project A1), exploration, explanation, and visualization (Project A3). In turn, Project B2 will test the methods developed in Projects A1 and A3 in plant operations and provide precious feedback.
机器学习(ML)的最新进展产生了用于检测化学过程中的异常和故障的新方法。由于缺乏可供公众访问的实际过程数据,它们通常使用来自动态过程模拟的合成数据进行开发和基准测试。这个过程有相当大的局限性,因为数据是理想化的,许多植物异常是很难预测的模拟没有实验。项目B2的主要目标是克服这些限制,并提供大量的实验过程数据的实际连续化工厂在非异常和异常操作点。所研究的工厂是申请人技术实验室现有的生产合成柴油燃料的小型工厂。它由一个反应器,一个蒸馏列,和蒸馏器组成。该工厂配备了行业典型的传感器(温度、压力、流量、液位、离线分析)和先进的传感器(用于检测降水和产品颜色变化的摄像头)。所产生的实验数据是在研究单位(RU)的研究区域A中开发用于异常检测的ML方法的必要基础。然而,生成的实验数据对于训练开发的深度学习方法来说仍然太稀疏。因此,项目B2的另一个主要目标是根据实验工厂数据和机械模型方程中的物理知识提供额外的伪真实合成数据。该方程由物质和能量守恒定律以及描述混合物的化学反应和热力学性质的方程组成。它们将被实施到工厂的稳态模拟器中。将选择和修改部分方程,从而产生项目A2、A3和A4的过程变量之间的保证关系。与项目A4和B1合作,开发了生成综合数据集的方法。因此,工厂的机械过程模拟的结果通过噪声、非测量过程变量和使用ML方法的动态插值进行修改和增强,所述ML方法通过比较合成和实际实验数据进行训练。为了支持ML方法,使用机械Hammerstein模型产生动态插值。生成的实验和合成数据将与RU和社区的B1项目合作,以开放访问的方式收集,存储和传播。合并后的数据可作为异常检测(项目A1)、探索、解释和可视化(项目A3)的高级ML方法的训练和评估数据。反过来,项目B2将在工厂运营中测试项目A1和A3中开发的方法,并提供宝贵的反馈。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jakob Burger其他文献

Professor Dr.-Ing. Jakob Burger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jakob Burger', 18)}}的其他基金

Reinforcement Learning for Automated Flowsheet Synthesis of Steady-State Processes
稳态过程自动流程图合成的强化学习
  • 批准号:
    466387255
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Modelling Attack Generation Process by Introducing Machine Learning and Domain Knowledge and Its Verification for Real Attack Data
引入机器学习和领域知识对攻击生成过程进行建模及其对真实攻击数据的验证
  • 批准号:
    21H03444
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Next-generation Semi-Structured Data Mining Technology Towards The Real-World Knowledge Creation Infrastructure
面向现实世界知识创造基础设施的下一代半结构化数据挖掘技术的开发
  • 批准号:
    20H00595
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
EAGER: PPER: Collaborative: Cellphone-Enabled Water Citizen Science for Data and Knowledge Generation, and Sharing: WatCitSci
EAGER:PPER:协作:手机支持的水公民科学,用于数据和知识生成和共享:WatCitSci
  • 批准号:
    1743992
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: PPER: Collaborative: Cellphone-Enabled Water Citizen Science for Data and Knowledge Generation, and Sharing: WatCitSci
EAGER:PPER:协作:手机支持的水公民科学,用于数据和知识生成和共享:WatCitSci
  • 批准号:
    1743985
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-generation semi-structured data mining technologies for real-world knowledge infrastructures
用于现实世界知识基础设施的下一代半结构化数据挖掘技术
  • 批准号:
    16H01743
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation
用于大规模知识库形成的下一代半结构化数据挖掘的开发
  • 批准号:
    24240021
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Knowledge generation and use based on probabilistic model estimation from large-scale structured data
基于大规模结构化数据概率模型估计的知识生成和使用
  • 批准号:
    23300039
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation
用于大规模知识库形成的下一代半结构化数据挖掘
  • 批准号:
    20240014
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Milling data generation system with automatic cutter selection based on product description and machining knowledge
铣削数据生成系统,可根据产品描述和加工知识自动选择刀具
  • 批准号:
    10650126
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data Generation and Knowledge-based Augmentation: Batch Distillation
数据生成和基于知识的增强:批量蒸馏
  • 批准号:
    498964862
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了