Reinforcement Learning for Automated Flowsheet Synthesis of Steady-State Processes

稳态过程自动流程图合成的强化学习

基本信息

项目摘要

Flowsheet synthesis is a key step in conceptual design of chemical processes. By its nature, it is a creative process that is hard to formalize. Current methods of computer-aided flowsheet synthesis are however mostly formalized algorithms that employ knowledge-based rules for creating flowsheet alternatives and mathematical programming for selecting optimal flowsheets from larger sets of alternatives (typically defined via superstructures). The goal of this project is using the recently achieved progress in reinforcement learning (RL) for automated but creative (here: inventive and explorative) flowsheet synthesis of steady-state chemical processes. The RL environment is a process simulator that contains the a priori physical knowledge, i.e. physico-chemical property data and a set of general process unit models. Step by step, the RL agent can set up process flowsheets, modify them, and evaluate them in the process simulator to obtain feedback/reward. The agent has no prior knowledge of chemical engineering and is trained to create flowsheets solely through automated interaction with the simulator. The central work hypothesis is that this setup is able to autonomously produce feasible process flowsheets that are near-optimal or optimal regarding a given cost function.In the first period of the Priority Programme, the Burger group (Chemical Engineering) will develop and implement simulation environments for several example problems. Simplified shortcut and surrogate models for process units are used to obtain robust simulation environments. Despite the reduced model depth, the action space remains large (due to a large number of conceivable flowsheet variants) and parameterized (due to continuous parameters of the process units). The Grimm Group (Machine Learning) will develop tailored RL methods to cope with these challenges. Hierarchical RL and novel methods for parametrized action spaces will be investigated and developed. For improved forward planning and exploration, the flowsheet synthesis problem will be embedded into a competitive two-player game setup, which has been introduced in joint preliminary work. This allows for efficient training in self-play using algorithms developed for classical game applications (Chess, Go). Close collaboration between both groups is required in all project stages to find optimal rules of the two-player game (allowed actions, objectives and reward) and optimal agent structures (feature selection, hierarchical decisions).The project is located in field F of the Priority Programme’s collaboration matrix and primarily in the research area #6 creativity. Great collaboration potential with other projects is given, because this project shares common interests with all projects that will develop robust simulation environments, creatively design process units or molecular structures, and/or optimize processes.
流程图综合是化工过程概念设计的关键步骤。就其性质而言,这是一个很难正式化的创造性过程。然而,计算机辅助流程图合成的当前方法大多是形式化的算法,其采用基于知识的规则来创建流程图备选方案和数学编程来从更大的备选方案集合(通常经由超结构定义)中选择最优流程图。该项目的目标是利用最近在强化学习(RL)方面取得的进展,实现稳态化学过程的自动化但具有创造性(此处:创造性和探索性)的流程图合成。RL环境是一个过程模拟器,它包含先验物理知识,即物理化学性质数据和一组通用过程单元模型。一步一步地,RL代理可以建立过程流程图,修改它们,并在过程模拟器中评估它们以获得反馈/奖励。代理人没有化学工程的先验知识,并接受培训,仅通过与模拟器的自动交互来创建流程图。核心工作假设是,这种设置能够自主地产生可行的工艺流程,这些流程在给定的成本函数方面接近最优或最优。在优先计划的第一阶段,Burger集团(化学工程)将为几个示例问题开发和实施模拟环境。简化的捷径和代理模型的过程单元被用来获得强大的仿真环境。尽管模型深度降低,但动作空间仍然很大(由于大量可想到的流程图变体)和参数化(由于过程单元的连续参数)。Grimm Group(机器学习)将开发量身定制的RL方法来应对这些挑战。将研究和开发用于参数化动作空间的分层强化学习和新方法。为了改进前瞻性规划和探索,流程图综合问题将嵌入到一个竞争性的两个玩家的游戏设置,这已被引入联合前期工作。这允许使用为经典游戏应用(国际象棋、围棋)开发的算法进行自我游戏的有效训练。在项目的所有阶段都需要两个小组之间的密切合作,以找到两个玩家游戏的最佳规则(允许的行动、目标和奖励)和最佳代理结构(特征选择、分层决策)。该项目位于优先方案合作矩阵的F字段,主要是在研究领域#6创造力。与其他项目的合作潜力很大,因为该项目与所有将开发强大的模拟环境,创造性地设计工艺单元或分子结构和/或优化工艺的项目有着共同的利益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Jakob Burger其他文献

Professor Dr.-Ing. Jakob Burger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Jakob Burger', 18)}}的其他基金

Data Generation and Knowledge-based Augmentation: Continuous OME Production
数据生成和基于知识的增强:连续 OME 生产
  • 批准号:
    498775838
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Screen4SpLDs - Development of an Automated Pre-Screening Tool for Specific Learning Disabilities in Children.
Screen4SpLDs - 开发针对儿童特定学习障碍的自动预筛查工具。
  • 批准号:
    EP/Y002121/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
  • 批准号:
    2345097
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Learning mechanistic models with automated experiments
职业:通过自动化实验学习机械模型
  • 批准号:
    2339026
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
  • 批准号:
    2908452
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
  • 批准号:
    10064479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Exploring the utility of deep learning methodologies in the automated surveying of cliff nesting birds
探索深度学习方法在悬崖筑巢鸟类自动测量中的实用性
  • 批准号:
    2840623
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Decoding glacial landscapes using automated geomorphological mapping and machine learning
使用自动地貌测绘和机器学习解码冰川景观
  • 批准号:
    2863174
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
  • 批准号:
    2238268
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了