Nano-optical spin electronics based on near-field optical microscopic technique

基于近场光学显微技术的纳米光学自旋电子学

基本信息

  • 批准号:
    14076206
  • 负责人:
  • 金额:
    $ 12.61万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

As well as the control of interband-polarization coherence, the storage and manipulation of spin coherence is of great importance in spintronics. The quantum confinement of electrons is advantageous for spintronics in terms of the control of spin behavior through the optimization of spin lifetime and g-factor. For local injection, control, and detection of spin-polarized electrons in individual quantum structures, optical spin manipulation with the near-field light source is needed.We have established a near-field scanning optical microscope (NSOM) system to measure and manipulate the spin state of a single quantum dot (QD) with a high spatiotemporal resolution under a magnetic field up to 5T. The spatial resolution as high as 30-50 nm enabled us to visualize wave functions of quantum-confined excitons.Owing to the high spatial resolution of our NSOM, the shape of the QD is clearly visualized. From magneto-PL spectroscopy of a single QD, a diamagnetic shift of the exciton emission was observed. Referring to the theoretical value we estimate the size of the QD from a diamagnetic coefficient, which is determined by the Bohr radius of excitons confined in QDs. The result was in good agreement with that obtained by the real-space NSOM mapping.We also built a near-field optical microscope for polarization spectroscopy in the reflection configuration. Polarization properties of good quality and stability as well as high optical throughput allows high-sensitive magneto-optical spectroscopy with high spatial resolution. Kerr-rotation imaging of magnetic domains in garnet thin films and depolarization microscopy of a phase-change material with a spatial resolution of 30 nm are demonstrated.
在自旋电子学中,除了带间极化相干的控制外,自旋相干的存储和操纵也是非常重要的。电子的量子限制对于自旋电子学而言是有利的,因为通过优化自旋寿命和g因子来控制自旋行为。为了实现自旋极化电子在单个量子结构中的局域注入、控制和探测,需要利用近场光源对自旋进行光学操控,我们建立了一套近场扫描光学显微镜(NSOM)系统,在高达5 T的磁场下对单个量子点(QD)的自旋进行了高时空分辨率的测量和操控。高达30-50 nm的空间分辨率使我们能够可视化量子限制激子的波函数。由于我们的NSOM的高空间分辨率,QD的形状被清晰地可视化。从单量子点的磁光致发光光谱,观察到的激子发射的抗磁位移。参考理论值,我们估计的量子点的大小从抗磁性系数,这是由限制在量子点的激子的玻尔半径。实验结果与实空间NSOM映射结果吻合较好。我们还搭建了一台反射式近场光学显微镜。良好的质量和稳定性以及高的光通量的偏振特性允许具有高空间分辨率的高灵敏度磁光光谱。证明了石榴石薄膜中磁畴的克尔旋转成像和相变材料的退偏振显微镜,空间分辨率为30 nm。

项目成果

期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Matsuda, T.Saiki, S.Nomura, M.Mihara, Y.Aoyagi: "Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30nm"Applied Physics Letters. Vol.81 No.12. 2291-2293 (2002)
K.Matsuda、T.Saiki、S.Nomura、M.Mihara、Y.Aoyagi:“空间分辨率为 30nm 的单一半导体量子成分的近场光致发光成像”应用物理快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Hosaka, T.Shintani, H.Koyanagi, K.Katoh, T.Nishida, T.Saiki: "Far-field and near-field optical reading of under-50 nm-sized pits"Japanese Journal of Applied Physics. Vol.41 No.8A. L884-L886 (2002)
S.Hosaka、T.Shintani、H.Koyanagi、K.Katoh、T.Nishida、T.Saiki:“50 nm 以下凹坑的远场和近场光学读取”日本应用物理学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
High-contrast imaging of NiO nano-channels using a polarization near-field scanning optical microscope
使用偏振近场扫描光学显微镜对 NiO 纳米通道进行高对比度成像
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.Ishikura;H.Ochiai;N.Yasufuku;K.Omine;T.Kobayashi;M.Sakai
  • 通讯作者:
    M.Sakai
走査型プローブ顕微鏡-最新技術と未来予測-
扫描探针显微镜——最新技术和未来预测——
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yonezawa;G.;Shibayama;M;森田清三
  • 通讯作者:
    森田清三
T.Saiki(分担執筆): "Progress in Nano-Electro-Optics II"Springer-Verlag Berlin Heidelberg. 250 (2003)
T.Saiki(撰稿人):“纳米电光进展 II”Springer-Verlag Berlin Heidelberg 250 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAIKI Toshiharu其他文献

SAIKI Toshiharu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAIKI Toshiharu', 18)}}的其他基金

Active control of nanopore translocation of nanoparticles and biomolecules
主动控制纳米颗粒和生物分子的纳米孔易位
  • 批准号:
    16K13645
  • 财政年份:
    2016
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Near-infrared nano-spectroscopy and emission energy control of semiconductor quantum dots using a phase-change mask method
使用相变掩模方法的半导体量子点的近红外纳米光谱和发射能量控制
  • 批准号:
    23360141
  • 财政年份:
    2011
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Control of weakly localized states in semiconductor quantum structures through modification of roughness and composition in the barrier layers
通过改变势垒层的粗糙度和成分来控制半导体量子结构中的弱局域态
  • 批准号:
    20360021
  • 财政年份:
    2008
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Low temperature near-field optical mapping and control of electron wavefunctions confined in nanostructures
纳米结构中限制的电子波函数的低温近场光学测绘和控制
  • 批准号:
    16310075
  • 财政年份:
    2004
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Fellowship
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
  • 批准号:
    2335283
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Research Grant
High temperature spin selectivity in a quantum dot qubit
量子点量子位中的高温自旋选择性
  • 批准号:
    24K01289
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel INFIQ® Lead-Free Infrared Quantum Dot Inks for Photovoltaic Applications
适用于光伏应用的新型 INFIQ® 无铅红外量子点墨水
  • 批准号:
    10064218
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Collaborative R&D
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
  • 批准号:
    2885938
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Standard Grant
Quantum Dot synthesis in Continuous Flow via Self-Optimising Nanoscale Manufacturing Platforms
通过自优化纳米级制造平台在连续流中合成量子点
  • 批准号:
    2783323
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Studentship
Study on two-dimensional quantum dot arrays towards integration of spin qubits
面向自旋量子位集成的二维量子点阵列研究
  • 批准号:
    23K17764
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Chemical synthesis and exploration of concerted optical properties of anisotropic three-dimensional quantum dot superlattices
各向异性三维量子点超晶格的化学合成及协同光学性质探索
  • 批准号:
    23H01802
  • 财政年份:
    2023
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了