Design of Quantum Information Processing Devices Utilizing Electron Spins by Electric and Magnetic Fields
利用电场和磁场产生的电子自旋的量子信息处理装置的设计
基本信息
- 批准号:14076216
- 负责人:
- 金额:$ 12.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From a viewpoint of application to quantum information processing, we have performed various basic researches to control electron spins in semiconductor quantum dots. 1. We have proposed a new idea of spin injection using a small constriction, quantum point contact (QPC), fabricated on semiconductors. Neither magnetic fields nor magnetic materials are required. By numerical studies of the transport through a QPC in the presence of spin-orbit interaction, we have shown that (i) the conductance quantization is observed, (ii) the current is spin-polarized in the transverse direction, and (iii) spin polarization of more than 50% can be realized in InGaAs heterostructures. 2. Electron spins have a long coherent time in silicon, which is an advantage for quantum information processing compared with compound semiconductors. We have numerically studied electronic states in silicon quantum dots, taking into account electron-electron interaction. We have shown that discrete energy levels are deg … More enerate reflecting a multi-valley structure of conduction band and, as 'a result, high spin states are easily realized. 3. Considering the hyperfine interaction between electron and nuclear spins in quantum dots, we have proposed an entanglement mechanism of nuclear spins driven by the electric current. Our mechanism is relevant to a leakage current in double quantum dots with Pauli spin-blockade. The current accompanied by the spin flip gradually increases a quantum correlation among nuclear spins, which markedly enhances the spin-flip rate of electrons and hence the leakage current. 4. We have investigated the dephasing effect by electron-phonon interaction on nonequilibrium-transport in an Aharonov-Bohm ring with an embedded quantum dot. Using nonequilibrium Green function, we have successfully explained the experimental result that an asymmetric shape of Fano resonance is changed to a symmetric shape under high bias voltages. 5. We have also performed numerical study of electric conductance through a QPC made of ferromagnetic metals, numerical simulation of quantum gate operations in coupled quantum dots, study of the influence of external electrodes on carbon nanotubes in single molecule devices, etc. Less
从应用于量子信息处理的观点出发,我们进行了各种基础研究,以控制半导体量子点中的电子自旋。1.我们提出了一个新的自旋注入的想法,使用一个小的收缩,量子点接触(QPC),制造在半导体上。既不需要磁场也不需要磁性材料。通过对存在自旋-轨道相互作用的QPC输运的数值研究,我们表明:(i)电导量子化被观察到,(ii)电流在横向上是自旋极化的,(iii)在InGaAs异质结构中可以实现超过50%的自旋极化. 2.电子自旋在硅中具有较长的相干时间,这是与化合物半导体相比用于量子信息处理的优势。我们数值研究了硅量子点中的电子态,考虑到电子-电子相互作用。我们已经证明,离散能级是度 ...更多信息 产生反射导带的多谷结构,结果,容易实现高自旋态。3.考虑到量子点中电子与核自旋的超精细相互作用,我们提出了电流驱动的核自旋纠缠机制。我们的机制是相关的泄漏电流在双量子点与泡利自旋封锁。伴随着自旋翻转的电流逐渐增加核自旋之间的量子相关性,这显著提高了电子的自旋翻转速率,从而提高了漏电流。4.研究了电子-声子相互作用对嵌入量子点的Aharonov-Bohm环非平衡输运的退相效应。用非平衡绿色函数成功地解释了在高偏压下Fano共振由非对称变为对称的实验结果。5.我们还通过铁磁金属制成的QPC进行了电导的数值研究,耦合量子点中量子门操作的数值模拟,单分子器件中外部电极对碳纳米管影响的研究等。
项目成果
期刊论文数量(192)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Studies of Kondo Effect Multilevel Quantum Dots
近藤效应多级量子点的数值研究
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Sato;M.Eto
- 通讯作者:M.Eto
Numerical Studies of Kondo Effect in Multilevel Quantum Dots
多级量子点近藤效应的数值研究
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Sato;M.Eto
- 通讯作者:M.Eto
論文標題量子ポイントコンタクトを用いたスピン注入の方法
论文标题:使用量子点接触的自旋注入方法
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yamamoto T;et al.;江藤幹雄
- 通讯作者:江藤幹雄
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ETO Mikio其他文献
ETO Mikio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ETO Mikio', 18)}}的其他基金
Theoretical study of multi-terminal quantum dot: proposal of tunable spin Hall effect
多端量子点理论研究:可调自旋霍尔效应的提出
- 批准号:
22540333 - 财政年份:2010
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kondo effect and spin manipulation in quantum dot complex systems
量子点复杂系统中的近藤效应和自旋操纵
- 批准号:
19540345 - 财政年份:2007
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
- 批准号:
23H01131 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanoscale quantum physics and quantum information processing with semiconductor quantum dots
纳米量子物理与半导体量子点的量子信息处理
- 批准号:
2891758 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Studentship
Solid state optical nonlinearities for quantum information processing
用于量子信息处理的固态光学非线性
- 批准号:
2887452 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Studentship
Investigating the hybrid quantum magnonic system for next-generation quantum information processing
研究下一代量子信息处理的混合量子磁力系统
- 批准号:
23KF0139 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum Walks and Cellular Automata for Quantum Information Processing
用于量子信息处理的量子行走和元胞自动机
- 批准号:
2310794 - 财政年份:2023
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Taming the Noisy Environment for Photon-Mediated Operations in Quantum Information Processing
驯服量子信息处理中光子介导操作的噪声环境
- 批准号:
2243742 - 财政年份:2022
- 资助金额:
$ 12.86万 - 项目类别:
Continuing Grant
Nanoscale Semiconductor Systems for Quantum Information Processing
用于量子信息处理的纳米级半导体系统
- 批准号:
568945-2022 - 财政年份:2022
- 资助金额:
$ 12.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum information processing and quantum optics with superconducting circuits
量子信息处理和超导电路量子光学
- 批准号:
RGPIN-2019-05790 - 财政年份:2022
- 资助金额:
$ 12.86万 - 项目类别:
Discovery Grants Program - Individual
Quantum information processing via photonically connected, modular neutral-atom processors
通过光子连接的模块化中性原子处理器进行量子信息处理
- 批准号:
568673-2021 - 财政年份:2022
- 资助金额:
$ 12.86万 - 项目类别:
Alliance Grants
Quantum Information Processing with Bosonic Systems
玻色子系统的量子信息处理
- 批准号:
RGPIN-2021-02637 - 财政年份:2022
- 资助金额:
$ 12.86万 - 项目类别:
Discovery Grants Program - Individual