Simultaneous Segmentation of Multiple Organs in Multi-Dimensional Medical Images
多维医学图像中多个器官的同时分割
基本信息
- 批准号:15070202
- 负责人:
- 金额:$ 43.52万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We developed a digital atlas of human anatomy and a simultaneous segmentation algorithm for multiple organs. The digital atlas of human anatomy is a computational and statistical database including information about human anatomy, pathology and function, such as physiological and motility function. This study focused on twelve organs in three dimensional upper abdominal CT images, namely oesophagus, heart, stomach, liver, gallbladder, pancreas, left and right kidneys, spleen, portal vein, aorta, and inferior vena cava. We built 1) probabilistic atlases of the organs showing the probability of existence, 2) statistical shape model including average and eigen-shapes, and 3) statistical database of features, such as gray values in the CT images. We also developed a simultaneous segmentation algorithm of 12 abdominal organs based on the digital atlas of human anatomy. The algorithm consists of spatial normalization, rough extraction and fine extraction of the organs. A hierarchal spatial normalization process was proposed in this project, which normalized large organs first, then performed normalization for small organs whose spatial variation is large. The rough extraction process was based on maximum a posterior method. The method estimated probabilistic distribution parameters of features using a modified EM algorithm which used the probabilistic atlases as a priori information. We proposed a posterior probability based on features of neighboring voxels. Finally the proposed method performed a multiple level set method which extracted the twelve organs simultaneously based on mutual interaction between neighboring organs. We applied the proposed algorithm to abdominal CT volumes of 17 cases and confirmed that the Jaccard index was 75% on average which is quite high comparing to the previous method.
我们开发了一个人体解剖学的数字图谱和多器官的同步分割算法。人体解剖数字图谱是一个计算和统计数据库,包括有关人体解剖,病理和功能,如生理和运动功能的信息。本研究的重点是12个器官的三维上腹部CT图像,即食管,心脏,胃,肝脏,胆囊,胰腺,左,右肾,脾,门静脉,主动脉和下腔静脉。我们建立了1)显示存在概率的器官概率图谱,2)包括平均和特征形状的统计形状模型,以及3)特征的统计数据库,例如CT图像中的灰度值。我们还开发了一种基于人体解剖学数字图谱的12个腹部器官的同步分割算法。该算法由空间归一化、器官粗提取和器官精提取三部分组成。提出了一种分层空间归一化方法,先对大器官进行归一化,然后对空间变化较大的小器官进行归一化。粗提取过程基于最大后验概率法.该方法使用一种改进的EM算法,它使用的概率地图集作为先验信息的特征的概率分布参数估计。我们提出了一种基于相邻体素特征的后验概率。最后,提出了一种多水平集方法,该方法基于相邻器官之间的相互作用同时提取12个器官。我们将该算法应用于17例腹部CT容积,并证实Jaccard指数平均为75%,这是相当高的,与以前的方法相比。
项目成果
期刊论文数量(131)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gaussian mixture model for texture-based medical image analysis
用于基于纹理的医学图像分析的高斯混合模型
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Masaki;H.Susaki;T.Korenaga;Ludvik Tesar
- 通讯作者:Ludvik Tesar
Rajalida Lipikorn: "A Modified Exoskeleton and a Hausdorff Distance Matching Algorithm for Shape-Based Object Recognition"Proc.of Internatioanl Conference on Imaging Science, Systems, and Technology (CISST'03). Vol.2. 507-511 (2003)
Rajalida Lipikorn:“用于基于形状的物体识别的改进外骨骼和豪斯多夫距离匹配算法”Proc.of International Conference on Imaging Science, Systems, and Technology (CISST03)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岡田裕: "最大値投影像と平均値投影像における肺腫瘤影のSN比の評価"Medical Imaging Technology. 21・2. 139-146 (2003)
Yutaka Okada:“最大强度投影图像和平均强度投影图像中肺部肿瘤阴影的SN比的评估”医学成像技术21・2(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBATAKE Hidefumi其他文献
KOBATAKE Hidefumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBATAKE Hidefumi', 18)}}的其他基金
Development of computer-aided diagnosis system for autopsy imaging
尸检成像计算机辅助诊断系统的研制
- 批准号:
17360190 - 财政年份:2005
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Intelligent Assistance in Diagnosis of Multi-dimensional Medical Images
多维医学影像智能辅助诊断
- 批准号:
15070101 - 财政年份:2003
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Development of the next generation CAD system for mammography
开发下一代乳腺X线摄影CAD系统
- 批准号:
13555115 - 财政年份:2001
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Signal separation from the mixture of correlated multiple signals and its application
相关多信号混合信号的分离及其应用
- 批准号:
12450163 - 财政年份:2000
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Basic Research on Computer Aided Diagnosis for Mammography and Its Practical Application
乳腺X线摄影计算机辅助诊断基础研究及其实际应用
- 批准号:
10044136 - 财政年份:1998
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Development of advanced CAD system for mammography and its practical application
先进乳腺X线摄影CAD系统的开发及其实际应用
- 批准号:
10555136 - 财政年份:1998
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Medical Image Database for Developing Computerized Diagnosis System
用于开发计算机诊断系统的医学图像数据库
- 批准号:
07308056 - 财政年份:1995
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Automatic Diagnostic System of Pneumoconiosis Using Computed Radiography Chest X-ray Images
计算机X线胸部X线图像尘肺自动诊断系统的研制
- 批准号:
63870043 - 财政年份:1988
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research