Development of computer-aided diagnosis system for autopsy imaging

尸检成像计算机辅助诊断系统的研制

基本信息

项目摘要

First, we established an interface system for transferring the data from the CT scanner in Chiba University to personal computer for the image processing and built an image database for this study. Then we focused on head and thorax in CT images to develop an bone fracture detection system since bone fractures are one of the most important cause of death Followings are main achievements of this study.1. HeadThe proposed algorithm detected a symmetric plane of the head in 3D CT image and subtracted the gray values in the left part and their corresponding values in the right parts to enhance the difference. The variation of the subtracted values were model statistically using eigen-image method We proposed and evaluated the bone fracture detection method which is based on the results of the analysis.2. ThoraxWe developed the following procedure for detecting bone fracture in the thorax CT imagesa) extraction of bone areab) classification of bones based on human anatomyc) detection of bone fractureIn the process a), we proposed not only the binarization based method but also fine texture based method. We have applied the process to the CT images in the database and confirmed that it could extract the bone region successfully. The process b) has the statistical model of the point set which can classify the bones into anatomical elements. From the experimental results, it was found that the success rate of the anatomical labeling was about 70%. Finally the last process detected locations of bone fracture based on the continuity of the bone surface. The experimental results showed that it could detect about 70% of the bone fractures with some false positives.
首先,我们建立了一个接口系统,将数据从千叶大学的CT扫描仪传输到个人计算机进行图像处理,并建立了本研究的图像数据库。针对骨折是导致死亡的重要原因之一,本文重点研究了CT图像中的头、胸部位,开发了一套骨折检测系统.该算法在三维CT图像中检测出头部的一个对称平面,并将头部左半部分的灰度值与其右半部分的灰度值相减,以增强差值。利用特征图像法对差值的变化进行统计建模,并在此基础上提出了骨折检测方法,并对该方法进行了评价. Thorax我们开发了以下过程来检测胸部CT图像中的骨折a)骨区域的提取b)基于人体解剖学的骨分类c)骨的检测在过程a)中,我们不仅提出了基于二值化的方法,而且提出了基于精细纹理的方法。我们已经将该过程应用于数据库中的CT图像,并证实它可以成功地提取骨区域。过程B)具有点集的统计模型,该模型可以将骨骼分类为解剖元素。根据实验结果,发现解剖标记的成功率约为70%。最后一个过程根据骨表面的连续性检测出骨折的位置。实验结果表明,它可以检测到约70%的骨折,但存在一些假阳性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Autopsy imaging in Japan and computer aided diagnosis
日本尸检成像和计算机辅助诊断
Does imaging technology overcome problems of conventional postmortem examination? A trial of computed tomography imaging for postmortem examination
頭部CT画像からの外傷性損傷部位の検出 -吹き抜け骨折による出血部位の抽出-
从头部CT图像中检测外伤部位-爆裂性骨折出血部位的提取-
A traial of computed tomography imaging for postmortem examination.
用于尸检的计算机断层扫描成像试验。
3次元胸部CT像上の骨の統計的分類法と死亡時画像診断への応用
3D胸部CT图像上骨骼的统计分类方法及其在死亡时诊断成像中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBATAKE Hidefumi其他文献

KOBATAKE Hidefumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBATAKE Hidefumi', 18)}}的其他基金

Simultaneous Segmentation of Multiple Organs in Multi-Dimensional Medical Images
多维医学图像中多个器官的同时分割
  • 批准号:
    15070202
  • 财政年份:
    2003
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Intelligent Assistance in Diagnosis of Multi-dimensional Medical Images
多维医学影像智能辅助诊断
  • 批准号:
    15070101
  • 财政年份:
    2003
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Development of the next generation CAD system for mammography
开发下一代乳腺X线摄影CAD系统
  • 批准号:
    13555115
  • 财政年份:
    2001
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Signal separation from the mixture of correlated multiple signals and its application
相关多信号混合信号的分离及其应用
  • 批准号:
    12450163
  • 财政年份:
    2000
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Basic Research on Computer Aided Diagnosis for Mammography and Its Practical Application
乳腺X线摄影计算机辅助诊断基础研究及其实际应用
  • 批准号:
    10044136
  • 财政年份:
    1998
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Development of advanced CAD system for mammography and its practical application
先进乳腺X线摄影CAD系统的开发及其实际应用
  • 批准号:
    10555136
  • 财政年份:
    1998
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Medical Image Database for Developing Computerized Diagnosis System
用于开发计算机诊断系统的医学图像数据库
  • 批准号:
    07308056
  • 财政年份:
    1995
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Automatic Diagnostic System of Pneumoconiosis Using Computed Radiography Chest X-ray Images
计算机X线胸部X线图像尘肺自动诊断系统的研制
  • 批准号:
    63870043
  • 财政年份:
    1988
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research

相似海外基金

Development of a real-time evaluation method using an AI-based image processing system in liver tumor ablaition
基于人工智能的图像处理系统开发肝脏肿瘤消融实时评估方法
  • 批准号:
    23K11923
  • 财政年份:
    2023
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of big data analysis platform for fish behavior in the sea by image processing, change detection, and machine learning techniques
利用图像处理、变化检测、机器学习技术构建海洋鱼类行为大数据分析平台
  • 批准号:
    23K14005
  • 财政年份:
    2023
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
  • 批准号:
    2877679
  • 财政年份:
    2023
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Studentship
CRII: SHF: RUI: Custom Hardware Accelerators for Privacy-Preserving Image Processing
CRII:SHF:RUI:用于保护隐私的图像处理的定制硬件加速器
  • 批准号:
    2347253
  • 财政年份:
    2023
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Image Processing Techniques for the Segmentation, Fusion, and Registration of Ultrasound Images from Intracavitary Gynecologic Brachytherapy Procedures
用于腔内妇科近距离放射治疗过程中超声图像的分割、融合和配准的图像处理技术
  • 批准号:
    557687-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Postdoctoral Fellowships
Development of an Image Processing Algorithm to Customize Cochlear Implant Procedures
开发用于定制人工耳蜗植入程序的图像处理算法
  • 批准号:
    548003-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Creating a Technological Infrastructure for the Digital Restoration of Cultural Properties Using Statistical Image Processing and Deep Learning
利用统计图像处理和深度学习为文化财产数字化修复创建技术基础设施
  • 批准号:
    22H00748
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development and utilization of digital / analog teaching materials using 3D image processing and 3D printers for biological education
利用3D图像处理和3D打印机进行生物教育的数字/模拟教材的开发和利用
  • 批准号:
    22K02988
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Image processing platform to identify photosynthetic pigment density to measure nitrogen content and manage fertilizer (Smart Sustainable Fertilizer Manager)
I-Corps:图像处理平台,用于识别光合色素密度,测量氮含量并管理肥料(智能可持续肥料管理器)
  • 批准号:
    2227256
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
  • 批准号:
    RGPIN-2018-03966
  • 财政年份:
    2022
  • 资助金额:
    $ 9.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了