Complementary database generation for machine learning for quality prognosis using the example of ring rolling
以环轧为例,为机器学习生成补充数据库以进行质量预测
基本信息
- 批准号:499350001
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed research project deals with the central research question of the usability of machine learning (ML) methods by means of synthetically generated training data sets in the field of radial-axial ring rolling (RARR). For the use of ML in production areas such as RARR, data sets of good and reject parts have to be recorded. Here, balanced data sets are advantageous with regard to the ratio of good and reject parts. However, this is not the case for industrially acquired data sets. Therefore, the approach of employing data enhancement by synthetic data generated by simulations is used within this research project. For RARR processes, however, fast analytical simulations do not exist by which a sufficiently large number of synthetically produced data sets with "rolling defects in geometry or process" can be generated. For this reason, the research question is investigated to what extent a similar process can be used for the transfer to RARR. Here, the cold rolling of rings is a suitable process. The advantage is the reduction of complexity due to the exclusively radial forming instead of the parallel forming in the radial and axial direction in the RARR as well as the reduced temperature influence during cold ring rolling. A central advantage of cold rolling for the research project is the semi-analytical model of the cold rolling process developed by the Chair of Forming and Machining Processes (FF). This semi-analytical method is used to simulate the cold rolling process quickly and precisely in order to generate process data. This approach will be used in a first project phase to determine if synthetically produced data sets can be used for the training of ML. These results are generalised for RARR and defined in form of an experimental environment for ML in ring rolling. The learning algorithm shall be supported by the integration of domain knowledge to accelerate the process prediction or to impose limits according to process specific limits. Another central question is the required data quality of the real and synthetic data and how differences in data quality are reflected in the process prediction. In the second project phase, the findings will be transferred to the hot rolling process. Through the cooperation of the Chair of Forming and Machining Processes (FF) and the Chair of Production Systems (LPS) new research questions at the intersection of classic simulation methods and ML and new possibilities for research transfer can be addressed. The combination of the semi-analytic model of cold ring rolling and its extension to RARR (FF) with the research and evaluation of shape defects by means of data driven methods in the field of RARR (LPS) forms the approach for a new method of machine learning.
拟议的研究项目涉及的机器学习(ML)方法的可用性的中心研究问题,通过综合生成的训练数据集在径向-轴向环轧制(RARR)领域。为了在RARR等生产领域使用ML,必须记录好的和不合格的零件的数据集。在此,平衡的数据集在良好和不合格部件的比率方面是有利的。然而,对于工业上获得的数据集,情况并非如此。因此,在本研究项目中使用了通过模拟生成的合成数据进行数据增强的方法。然而,对于RARR过程,不存在快速分析模拟,通过该快速分析模拟可以生成具有“几何形状或过程中的轧制缺陷”的足够大数量的合成产生的数据集。出于这个原因,研究的问题是在何种程度上可以用于转移到RARR类似的过程。在这里,环的冷轧是合适的工艺。其优点是,由于RARR中仅采用径向成形而不是径向和轴向平行成形,从而降低了复杂性,并且降低了冷环轧制过程中的温度影响。冷轧研究项目的核心优势是由成形和加工工艺主席(FF)开发的冷轧过程的半分析模型。这种半解析方法可以快速、准确地模拟冷轧过程,生成过程数据。这种方法将在第一个项目阶段使用,以确定合成生成的数据集是否可用于ML训练。这些结果概括为RARR和定义的形式ML环轧制的实验环境。学习算法应得到领域知识集成的支持,以加速过程预测或根据过程特定限制施加限制。另一个中心问题是真实的和合成数据所需的数据质量,以及数据质量的差异如何反映在过程预测中。在第二个项目阶段,研究结果将转移到热轧过程中。通过成形和加工工艺主席(FF)和生产系统主席(LPS)的合作,可以解决经典仿真方法和ML交叉点的新研究问题以及研究转移的新可能性。冷辗扩半解析模型及其扩展到RARR(FF)与通过RARR(LPS)领域中的数据驱动方法对形状缺陷的研究和评估相结合,形成了一种新的机器学习方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Alexander Brosius其他文献
Professor Dr.-Ing. Alexander Brosius的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Alexander Brosius', 18)}}的其他基金
Material- and failure characteristics for high-speed forming and cutting
高速成形和切割的材料和失效特征
- 批准号:
316056392 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Mikrostrukturentwicklung beim direkten Strangpressen
直接挤压过程中微观结构的发展
- 批准号:
196753950 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Identifikation von Werkstoff- und Reibmodellen sowie zugehöriger Parameter mittels inverser Methodik und neuartigen Versuchsaufbauten
使用逆向方法和新颖的测试设置识别材料和摩擦模型以及相关参数
- 批准号:
55600706 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Verifikation und Validierung der Folgefließortmodellierungen an praxisnahen Tiefziehbauteilen
对实际拉深部件的后续位置建模进行验证和确认
- 批准号:
55621082 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Thermomechanical ring rolling with predictive property control
具有预测性能控制的热机械环轧
- 批准号:
424337466 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Experimental characterisation and numerical analysis of increasing fatigue strength by residual stresses for cross rolling parts
通过残余应力提高交叉滚压零件疲劳强度的实验表征和数值分析
- 批准号:
374767659 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Experimental investigation and modelling of the heat transfer during hot stamping
热冲压过程中传热的实验研究和建模
- 批准号:
505805919 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Experimental and numerical analysis of forming-induced residual stresses for fatigue strength increase of highly cyclically loaded high-purity copper components
成形引起的残余应力可提高高循环载荷高纯度铜部件的疲劳强度的实验和数值分析
- 批准号:
531874972 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants (Transfer Project)
相似海外基金
EAGER: SSMCDAT2023: Database generation to identify trends in inter- and intra-polyhedral connectivity and energy storage behavior
EAGER:SSMCDAT2023:生成数据库以确定多面体间和多面体内连接和能量存储行为的趋势
- 批准号:
2334240 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Expert curation of sequence variants in the proximal urea cycle genes
近端尿素循环基因序列变异的专家管理
- 批准号:
10630560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
- 批准号:
2311202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery and characterization of synthetic bioinformatic natural product anticancer agents
合成生物信息天然产物抗癌剂的发现和表征
- 批准号:
10639302 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Genome Editing and Biological Effects Testing Section
基因组编辑及生物效应检测组
- 批准号:
10773478 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Core B: Translational, Cellular and Molecular Analysis
核心 B:转化、细胞和分子分析
- 批准号:
10715766 - 财政年份:2023
- 资助金额:
-- - 项目类别:
High-throughput Single Cell Co-assay of Histone Modifications andTranscriptome
组蛋白修饰和转录组的高通量单细胞联合分析
- 批准号:
10698374 - 财政年份:2023
- 资助金额:
-- - 项目类别: