Microfluidics Quantum Diamond Sensor
微流控量子金刚石传感器
基本信息
- 批准号:499424854
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of microfluidics has witnessed rapid growth in the recent years, and it is now ubiquitous in areas as diverse as biology, medicine, and chemistry. Today, microfluids are a paramount resource in blood testing, printing, and fuel cells, to cite but a few. The ability to estimate the main microfluid properties is crucial for the drug industry and in medicine where, for example, detection of free radicals in biological samples is critical to understanding processes such as the immune response. The most widespread platform, which has contributed to the greatest extent to the development of microfluidics is the Lab on a Chip approach to chemical and biological analysis. Since chips contain microfluid channels and integrated analysis tools, it is vital to have precise control over the physics of fluids in these microchannels. However, accumulating evidence has shown that the flow in these channels does not always obey macroscopic fluid laws, such as the no-slip boundary condition usually taken for granted when characterizing fluid properties. Though there have been advances in microscopic theory, a technology to accurately measure velocity has not yet been developed. This Mf-QDS presents a radically different approach to the measurement of velocity and diffusion properties in microfluid channels. Based on shallow Nitrogen Vacancy (NV) centers implanted in a diamond matrix positioned sufficiently close to the flowing liquid, we will use nano-NMR techniques to detect the statistical field produced by the nuclei in the vicinity of the NV. As the molecules flow through the channel, the magnetic noise induced in the NV fluctuates. Tracking these fluctuations as changes in the NV state will provide an unprecedented level of accuracy in terms of the velocity flow profile of the microfluid and its temperature, while making it possible to differentiate between several component species. None of these parameters can be achieved with current classical methods although they are vital for the next generation of microfluid devices. We will design and implement an integrated tool containing the diamond with the NVs and microfluid channels that can be exported to any microfluidic device, and provides a state of the art resolution capacity.
近年来,微流体领域发展迅速,现在在生物学、医学和化学等领域无处不在。今天,微流体是血液检测、打印和燃料电池等领域的重要资源。估计主要微流体特性的能力对于制药行业和医学至关重要,例如,生物样品中自由基的检测对于理解免疫反应等过程至关重要。 最广泛的平台,在最大程度上促进了微流体的发展,是化学和生物分析的芯片实验室方法。由于芯片包含微流体通道和集成分析工具,因此对这些微通道中的流体物理特性进行精确控制至关重要。然而,越来越多的证据表明,这些通道中的流动并不总是遵循宏观流体定律,例如在表征流体性质时通常认为是理所当然的无滑移边界条件。虽然在微观理论方面已经取得了进展,但尚未开发出精确测量速度的技术。 这种Mf-QDS提出了一种完全不同的方法来测量微流体通道中的速度和扩散特性。基于浅氮空位(NV)中心植入金刚石矩阵定位足够接近流动的液体,我们将使用纳米核磁共振技术来检测在NV附近的核产生的统计场。当分子流过通道时,在NV中诱导的磁噪声波动。跟踪这些波动作为NV状态的变化将在微流体的速度流动曲线及其温度方面提供前所未有的准确度,同时使得有可能区分几种组分种类。这些参数中没有一个可以用当前的经典方法来实现,尽管它们对于下一代微流体装置至关重要。我们将设计和实现一个集成工具,包含钻石与NVs和微流体通道,可以输出到任何微流体设备,并提供最先进的分辨率能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Fedor Jelezko其他文献
Professor Dr. Fedor Jelezko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Fedor Jelezko', 18)}}的其他基金
Nanodiamonds as sensitive sensors to study tetherin structure and dynamics
纳米金刚石作为敏感传感器来研究系链蛋白结构和动力学
- 批准号:
318290668 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Single spin EPR and NMR with diamond atomic spin sensors
使用金刚石原子自旋传感器的单自旋 EPR 和 NMR
- 批准号:
221269520 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Priority Programmes
Scalable quantum logic using engineered spin in diamond
利用金刚石中的工程自旋实现可扩展的量子逻辑
- 批准号:
172883229 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Units
ERA NANOSCI: NanoEngineered Diamond for Quantum Information Technology
ERA NANOSCI:用于量子信息技术的纳米工程金刚石
- 批准号:
40096019 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Towards diamond light matter quantum interface:development of a multi-qubit quantum register based on paramagnetic color centers in diamond
走向钻石光物质量子界面:基于钻石顺磁色心的多量子位量子寄存器的开发
- 批准号:
445243414 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Quantum+ grade diamond for quantum technologies
用于量子技术的量子级金刚石
- 批准号:
387073854 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Advanced Quantum Sensing with NanoDiamonds
使用纳米金刚石进行先进的量子传感
- 批准号:
532771161 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Next generation diamond quantum sensors for future industries
面向未来行业的下一代金刚石量子传感器
- 批准号:
IM240100073 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Mid-Career Industry Fellowships
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
- 批准号:
2242049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Multimodal cancer therapy and diagnostic system using 256-channel diamond quantum sensor array
使用256通道金刚石量子传感器阵列的多模式癌症治疗和诊断系统
- 批准号:
23H03721 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanoscale characterization of high-pressure superconductors using diamond quantum sensing
使用金刚石量子传感对高压超导体进行纳米级表征
- 批准号:
23H01835 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of microscale NMR system toward single cell measurement using diamond quantum sensor
使用金刚石量子传感器开发用于单细胞测量的微型核磁共振系统
- 批准号:
22KJ1907 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
- 批准号:
23KJ2135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
- 批准号:
2240399 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Platform Development for Diamond Quantum and Photonic Technologies
钻石量子和光子技术平台开发
- 批准号:
2888637 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Electron Spin Multiple Resonance in Diamond and its Application to Quantum Sensor
金刚石中电子自旋多重共振及其在量子传感器中的应用
- 批准号:
22H01558 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)