QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors

QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量

基本信息

  • 批准号:
    2326767
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This QuSeC-TAQS project aims to promote the progress of science by developing new quantum sensing tools for studying physical phenomena, structure, and composition of materials. In a collaborative, multi-institutional effort, this team will use nitrogen vacancy (NV) centers in diamond as a large-scale quantum sensing platform for studying material systems. Specifically, the team will use simultaneous measurements of multiple NV centers to measure new quantities that are inaccessible by other methods. Developing new tools for understanding condensed matter systems has broad impacts on materials science, and on the ability to discover new phenomena and devices for quantum information science, microelectronics, energy harvesting, and other applications. This project will train a new generation of scientists that can traverse the boundaries between quantum information science, quantum nanoscale sensing, and condensed matter physics. The PIs will facilitate student and postdoc mobility across institutions and host an annual meeting to share techniques, catalyze new theoretical advances, and establish sensing protocols that can be rapidly disseminated to the community. At the undergraduate level, the PIs will collaborate on the design and implementation of an NV confocal microscope for new undergraduate quantum lab courses to allow students to implement a two-qubit gate using single NV centers, to demystify quantum technologies and increase the strength of the quantum workforce pipeline. All three participating institutions will also develop summer student projects based on this research aimed at broadening participation and accompanied by interdisciplinary directed readings to help students get the most out of summer research. This program has the transformative potential to establish nanoscale quantum sensors as a platform for studying local correlations in condensed matter systems. Spatially and temporally correlated phenomena play a central role in condensed matter physics, but in many cases there are no tools available that allow for measurements of correlations at the relevant length and time scales. This team aims to use NV centers in diamond as point sensors for measuring two-point magnetic field correlators. This novel quantum sensing platform will allow them to measure new physical quantities that are otherwise inaccessible with current tools. They will apply NV nanoscale covariance magnetometry, which the PIs have recently demonstrated in proof-of-principle experiments, to study condensed matter phenomena in a variety of contexts, and in parallel they will develop theoretical understanding of covariance magnetometry as well as systems engineering to realize a robust, large-scale sensing platform with new capabilities. Their demonstration of this quantum sensing platform will focus on understanding transport in graphene in the strongly interacting regime. The specific goals for this project are to apply covariance magnetometry using pairs of NV centers to study transport in state-of-the-art graphene and twisted bilayer graphene devices, explore the theoretical framework for covariance magnetometry and establish fundamental limits for different modes of operation from an information theoretic standpoint, and to create robust, large scale, multiplexed quantum sensors that are capable of measuring correlations among many pairs of NV centers simultaneously using camera-based readout and integrated devices. This project was co-funded by the Quantum Sensors Challenge for Transformative Advances in Quantum Systems (QuSeC-TAQS) program, and the Office of International Science and Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个QuSec-TAQS项目旨在通过开发新的量子传感工具来研究物理现象、材料结构和组成,以促进科学进步。在一项合作的、多机构的努力中,该团队将使用钻石中的氮空位(NV)中心作为研究材料系统的大规模量子传感平台。具体地说,该团队将使用多个NV中心的同时测量来测量其他方法无法获得的新数量。发展理解凝聚态系统的新工具对材料科学以及为量子信息科学、微电子学、能量采集和其他应用发现新现象和新器件的能力具有广泛的影响。该项目将培养能够跨越量子信息科学、量子纳米尺度传感和凝聚态物理之间界限的新一代科学家。PIS将促进学生和博士后在各机构之间的流动,并主办年度会议,分享技术,催化新的理论进步,并建立可迅速传播到社区的传感协议。在本科生层面,PI将合作设计和实施NV共焦显微镜,用于新的本科量子实验室课程,允许学生使用单个NV中心实现两量子比特门,以揭开量子技术的神秘面纱,并增加量子劳动力管道的力量。所有三个参与机构还将在这项研究的基础上开发暑期学生项目,旨在扩大参与范围,并伴随着跨学科的定向阅读,以帮助学生最大限度地从暑期研究中获益。该计划具有建立纳米级量子传感器的变革性潜力,作为研究凝聚态系统中局部关联的平台。空间和时间相关现象在凝聚态物理中发挥着中心作用,但在许多情况下,没有可用的工具来测量相关长度和时间尺度上的相关性。该团队的目标是将钻石中的NV中心用作测量两点磁场相关器的点传感器。这个新颖的量子传感平台将使他们能够测量新的物理量,否则这些物理量是目前的工具无法获得的。他们将应用NV纳米尺度协方差磁学,PI最近在原理验证实验中展示了这一点,以研究各种环境中的凝聚态现象,同时他们将发展对协方差磁学以及系统工程的理论理解,以实现具有新功能的强大的大规模传感平台。他们对这一量子传感平台的演示将集中在了解石墨烯在强相互作用区域中的传输。该项目的具体目标是使用NV中心对应用协方差磁测量来研究最先进的石墨烯和扭曲的双层石墨烯设备中的输运,探索协方差磁测量的理论框架,从信息论的角度为不同的操作模式建立基本限制,并创建能够使用基于相机的读出和集成设备同时测量多对NV中心之间的相关性的坚固、大规模的多路复用量子传感器。该项目由量子传感器挑战量子系统变革性进展(QuSeC-TAQS)计划和国际科学与工程办公室共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathalie de Leon其他文献

Nathalie de Leon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathalie de Leon', 18)}}的其他基金

CAREER: Novel Diamond Surface Functionalization and Nanoscale Surface Spectroscopy for Quantum Applications
职业:用于量子应用的新型金刚石表面功能化和纳米级表面光谱
  • 批准号:
    1752047
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
  • 批准号:
    2326784
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了