Elucidating the folding mechanism of a multi domain protein by combining quench-flow hydrogen exchange methodology with multidimensional NMR spectroscopy

通过结合骤冷流氢交换方法与多维核磁共振波谱阐明多结构域蛋白质的折叠机制

基本信息

项目摘要

Elucidating the folding mechanism of a protein represents one major goal in structural biology. The majority of experimental studies aiming to unravel the folding path of a protein have focused on single domain proteins so far. The fact that about 65 % of the procaryotic and about 80 % of the eucaryotic proteome comprise multi domain proteins corroborates the distinct interest in obtaining spatial- and time-dependent insights into the folding path of proteins possessing higher complexity. Here, a synergistic combination between quench-flow hydrogen exchange and multidimensional NMR spectroscopy will be applied to three domain Adenylate Kinase (AdK) to determine the folding process of this enzyme on a millisecond to second time scale at atomic resolution. Functionally, the catalytic activity of native AdK ensures the maintenance of cellular concentration of adenylate nucleotides and acts for this reason as an eminent model system to study the precise relation between folding and function. The proposed work will include natural ligands and an enzymatic inhibitor in the experimental setup enabling to probe binding features within the folding landscape of AdK. Thus, this project aims to make new contributions regarding the following questions: Does AdK refold in a domain dependent manner? Which lifetime do potential folding intermediates possess? How much native structure is needed to act as a functional enzyme? How does the formation of secondary and tertiary structure accounts for functionality of an enzyme? It can be assumed that the precise knowledge of the folding mechanism of three domain AdK in space and time prepares an excellent ground for a better understanding of folding and function of multi domain proteins in general as well as demanding applications e.g. in protein design can be envisioned.
阐明蛋白质的折叠机制是结构生物学的一个主要目标。迄今为止,大多数旨在揭示蛋白质折叠路径的实验研究都集中在单结构域蛋白质上。约65%的原核蛋白质组和约80%的真核蛋白质组包含多结构域蛋白质的事实证实了对获得对具有更高复杂性的蛋白质的折叠路径的空间和时间依赖性见解的独特兴趣。在这里,猝灭流氢交换和多维NMR光谱之间的协同组合将被应用于三个域腺苷酸激酶(AdK),以确定这种酶的折叠过程在毫秒到秒的时间尺度在原子分辨率。在功能上,天然AdK的催化活性确保了腺苷酸核苷酸的细胞浓度的维持,并因此作为研究折叠和功能之间精确关系的杰出模型系统。拟议的工作将包括天然配体和酶抑制剂的实验设置,使探针内的AdK折叠景观的结合功能。因此,该项目旨在对以下问题做出新的贡献:AdK是否以域依赖的方式重新折叠?潜在的折叠中间体具有什么样的寿命?需要多少天然结构才能作为一种功能性酶发挥作用?二级和三级结构的形成如何解释酶的功能?可以认为,三结构域AdK在空间和时间上的折叠机制的精确知识为更好地理解多结构域蛋白质的折叠和功能以及例如在蛋白质设计中的要求苛刻的应用提供了良好的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Kovermann其他文献

Professor Dr. Michael Kovermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Kovermann', 18)}}的其他基金

High resolution structure of a high energy protein state
高能蛋白质态的高分辨率结构
  • 批准号:
    235527726
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Exploring thermodynamic and functional properties of a nucleotide binding protein intracellularly using high resolution fluorine NMR spectroscopy
使用高分辨率氟核磁共振波谱探索细胞内核苷酸结合蛋白的热力学和功能特性
  • 批准号:
    441495846
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Mechanism of transcription and related gene expression processes in bacteria and human mitochondria
细菌和人类线粒体的转录机制及相关基因表达过程
  • 批准号:
    10810460
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Biophysical and structural studies of protein and enzyme mechanism, evolution, and engineering
蛋白质和酶机制、进化和工程的生物物理和结构研究
  • 批准号:
    10550521
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining the molecular assembly mechanism of bacterial amyloid from single protein molecules to mature fibrils
定义细菌淀粉样蛋白从单个蛋白质分子到成熟原纤维的分子组装机制
  • 批准号:
    494840
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Studying the role of eIF4A in Pancreatic Cancer
研究 eIF4A 在胰腺癌中的作用
  • 批准号:
    10640183
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
A Pathway for Necrotic Cell Death
坏死细胞死亡的途径
  • 批准号:
    10680459
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanism of Disease-causing mutations in PCNA
PCNA 致病突变机制
  • 批准号:
    10699962
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanism and therapeutic opportunities of targeting the Tudor domain
针对 Tudor 结构域的机制和治疗机会
  • 批准号:
    10606365
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Defining the Interplay Between Viral Adaptation and Host Proteostasis
定义病毒适应和宿主蛋白质稳态之间的相互作用
  • 批准号:
    10587055
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Mechanism and function of tRNA modification and folding
tRNA修饰和折叠的机制和功能
  • 批准号:
    RGPAS-2020-00010
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
A Pathway for Necrotic Cell Death
坏死细胞死亡的途径
  • 批准号:
    10522435
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了