Automatic data-driven modeling and H2/H-infinity- norm-based dimension reduction of process-oriented and cooperative systems for SHM condition analysis with methods of system identification and machine learning on exposed structures
面向过程和协作系统的自动数据驱动建模和基于 H2/H 无穷范数的降维,用于 SHM 条件分析,采用系统识别和裸露结构机器学习方法
基本信息
- 批准号:501664543
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The digital change is causing profound changes in all areas of society. In the fusion of BIM, the optimized planning, execution and management of plants, buildings and infrastructures, with Structural Health Monitoring (SHM) a digital twin functions as a central element of an efficient data organization. The aim of this project is a method that realizes automated data-driven modeling based on the H2/H-infinite norm and methods of system identification coupled with machine learning. This enables a condition monitoring as a digital twin over the service life of the real twin, the building, which is incorporated into an SHM/BIM concept. Based on process-oriented cooperative systems, special physically interpretable indicators are able to automatically display and localize structural changes. The numerical method works with stochastic multi-correlated output-only measurement data, with special consideration and classification of environmental and operational conditions. The automatically generated parameterized stochastic process models of the system and filter theory enables a prediction of future damage states on the examined structure. This gives the public authority a set of tools for predictive planning of maintenance measures on structures with high economic benefits.
数字变革正在社会的各个领域引起深刻的变化。在BIM的融合中,工厂、建筑和基础设施的优化规划、执行和管理,以及结构健康监测(SHM)作为高效数据组织的核心要素的数字孪生体。本项目旨在实现基于H2/ h -无限范数和系统识别方法以及机器学习的自动化数据驱动建模方法。这使得在真正的孪生体(建筑)的使用寿命期间,作为数字孪生体的状态监测成为可能,这被纳入了SHM/BIM概念。基于面向过程的协同系统,特殊的物理可解释指标能够自动显示和定位结构变化。数值方法适用于随机多相关的仅输出的测量数据,并特别考虑和分类环境和操作条件。自动生成的系统参数化随机过程模型和滤波理论能够预测被测结构的未来损伤状态。这为公共当局提供了一套具有高经济效益的结构维护措施的预测性规划工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Armin Lenzen其他文献
Professor Dr.-Ing. Armin Lenzen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Armin Lenzen', 18)}}的其他基金
Identifikation und Erstellung von Modellen der Strukturdynamik auf Basis der Systemtheorie zur Schadenserkennung und -lokalisation
基于系统理论的结构动力学模型的识别和创建,用于损伤检测和定位
- 批准号:
5445049 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Damage Localization and State Space Identification Based on Noisy Observations, H-infinity Estimation Theory and Subspace Methods during Lifetime of Non-Stationary, Mechanical Structures using Ambient Excitation
使用环境激励的非静止机械结构寿命期间基于噪声观测、H 无穷大估计理论和子空间方法的损伤定位和状态空间识别
- 批准号:
350257805 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
-- - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
- 批准号:
2323984 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




