Ground truth inference and quality control of geospatial data collection by paid crowdworkers for the efficient acquisition of training data for deep learning systems

由付费众包人员对地理空间数据收集进行地面实况推理和质量控制,以有效获取深度学习系统的训练数据

基本信息

项目摘要

Currently, great efforts are being made to apply Deep Learning systems like Convolutional Neural Networks (CNN) also to remote sensing images. However, due to the peculiarities of remote sensing images, standard CNNs are of limited use for their analysis. It would be desirable to train specialized CNNs from scratch, but this is yet not possible due to the lack of the required large amount of annotated training data.Crowdsourcing offers an effective method for providing such data, which has led to increasing interest in using this method to collect geospatial data from remote sensing images. However, the crowd is composed of people with very different backgrounds, most of whom are not familiar with geospatial data collection standards. Therefore, we must expect results of very heterogeneous quality. The objective of this project is to enable the collection of high-quality data from remote sensing images by paid crowdworkers. The process is designed such that no time-consuming manual inspection of the results is necessary even if no reference data are available. We suggest a data-driven approach based on multiple data collection to describe and improve the geometric quality of the collected data. First, we define an integrated quality measure that quantifies the similarity of two geometric representations (one collected by a crowdworker, one the corresponding ground truth) of a geographic object with one numerical value. We will derive this measure based on statistical evaluations by using an approach from the information theory. As next step, we will integrate multiple representations into one common geometry. We will use the quality measure on the one hand to evaluate the quality of the integrated geometries and on the other hand to optimize the integration process. This can be realized even intrinsically without comparison to given ground truth.Then, we want to investigate if by using a CNN an automated quality evaluation can be realized also without multiple data collection. The input of this CNN will be a remote sensing image and one individual geometry collected by a crowdworker. As output, the CNN shall predict a quality measure that describes how good the object was collected. Using such a CNN, we are able to avoid the necessity of multiple acquisitions of the same object. Consequently, collecting data will be much cheaper.In order to validate the generalizability of our approach, we apply it to scenes of quite different characteristics. This requires an adaptation of our model to different domains. For this purpose, we use an Active Learning approach, which iteratively performs domain adaptation in the interplay of crowdworkers and a CNN. Finally, we address possible follow-up research.
目前,人们正在努力将卷积神经网络(CNN)等深度学习系统应用于遥感图像。然而,由于遥感图像的特殊性,标准的人工神经网络在遥感图像分析中的应用有限。从零开始训练专门的CNN是可取的,但由于缺乏所需的大量带注释的训练数据,这是不可能的。克劳德外包提供了一种提供此类数据的有效方法,这导致人们对使用这种方法从遥感图像中收集地理空间数据越来越感兴趣。然而,人群是由背景迥异的人组成的,他们中的大多数人都不熟悉地理空间数据采集标准。因此,我们必须期待质量非常不同的结果。该项目的目标是使受薪群众工作者能够从遥感图像中收集高质量的数据。该过程的设计使得即使没有参考数据也不需要对结果进行耗时的人工检查。我们提出了一种基于多数据采集的数据驱动方法来描述和提高采集数据的几何质量。首先,我们定义了一个综合质量度量,它用一个数值来量化地理对象的两个几何表示(一个是由众筹人员收集的,一个是对应的地面事实)的相似度。我们将使用信息论中的一种方法,根据统计评估得出这一衡量标准。作为下一步,我们将把多个表示集成到一个公共几何体中。我们将一方面使用质量度量来评估集成几何的质量,另一方面来优化集成过程。这即使在本质上也可以实现,而不需要与给定的地面事实进行比较。然后,我们想要调查使用CNN是否也可以在不收集多次数据的情况下实现自动质量评估。美国有线电视新闻网的输入将是一张遥感图像和一名众筹人员收集的个人几何图形。作为输出,美国有线电视新闻网将预测一项质量指标,该指标描述了物品收集的质量。使用这样的CNN,我们能够避免对同一对象进行多次收购的必要性。为了验证该方法的泛化能力,我们将其应用于具有不同特征的场景中。这需要我们的模型适应不同的领域。为此,我们使用了一种主动学习方法,该方法在众筹人员和CNN的相互作用中迭代地执行域适应。最后,我们讨论了可能的后续研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Uwe Sörgel其他文献

Professor Dr. Uwe Sörgel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Uwe Sörgel', 18)}}的其他基金

Bathymetry by fusion of airborne Laserscanning and multi-spectral Aerial Imagery
通过机载激光扫描和多光谱航空图像融合进行水深测量
  • 批准号:
    313499925
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Objektbasierte Fusion von SAR-Daten mit Schrägluftbildern in städtischem Gebiet
基于对象的 SAR 数据与城市地区倾斜航空图像的融合
  • 批准号:
    190378149
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automatische Extraktion von Vegetation in urbanem Gelände anhand der Auswertung des zeitlichen Verhaltens von Flugzeuglaserscannersignalen
通过评估飞机激光扫描仪信号的时间行为自动提取城市地形植被
  • 批准号:
    134144775
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra compact bathymetric measurement system chain for capture of shallow waters
用于捕获浅水区的超紧凑型测深测量系统链
  • 批准号:
    500085320
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似海外基金

STEPPING OUT - Understanding the ground truth and mechanisms of falls and balance instability in community dwelling older people.
走出去——了解社区老年人跌倒和平衡不稳定的基本事实和机制。
  • 批准号:
    EP/Y029143/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Aboriginal Exemption: Truth-telling, History, and Healing
原住民豁免:讲真话、历史和治愈
  • 批准号:
    DP240102275
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Truth-telling Australia's colonial past with art by non-Indigenous artists
通过非土著艺术家的艺术讲述澳大利亚的殖民历史真相
  • 批准号:
    DE240100038
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Pathway to Truth and Reconciliation: Organ Donation and Transplantation
通往真相与和解之路:器官捐献与移植
  • 批准号:
    485685
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Redesigning Media Literacy as lifelong learning in the age of Post-truth
将媒体素养重新设计为后真相时代的终身学习
  • 批准号:
    23K02745
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Unvarnished Truth: Pursuing Health Equity by Correcting Disinformation Targeting African Americans about the FDA's Proposed Ban on Menthol Cigarettes and Flavored Cigars
赤裸裸的真相:通过纠正针对非裔美国人的关于 FDA 提议禁止薄荷卷烟和调味雪茄的虚假信息来追求健康公平
  • 批准号:
    10740281
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
H.E.A.R.T. Medicine: Humanities Education, Arts, Anticolonial Reconciling, and Truth-Telling in Medicine
心。
  • 批准号:
    484407
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Episodic self-display and shifting modes of address: Performing identity in artists' moving image in a neoliberal era of post-truth
情景式的自我展示和转变的表达方式:在后真相的新自由主义时代艺术家的动态图像中表现身份
  • 批准号:
    2908092
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
The Narrative in Post-Truth Era: Facts and Literary Interpretation in Contemporary American Journalism
后真相时代的叙事:当代美国新闻业的事实与文学解读
  • 批准号:
    23K12130
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mediated climate change politics in the post-truth era: the epistemology and performance of contested digital truth claims
后真相时代的气候变化政治:有争议的数字真相主张的认识论和表现
  • 批准号:
    AH/X011631/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了