Development of Evolutionary Algorithms based on a Picture of Evolution of Probability Distribution
基于概率分布演化图的演化算法的发展
基本信息
- 批准号:14084211
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study, we aimed at Genetic Algorithms (GA) as optimization methods utilizing only function values to be optimized. We have examined the GA that uses population of search points with a picture of evolution of probability distribution, carried out comparison study of similar method called Estimation of Distribution Algorithms (EDA), and improved GA considering their applications to practical engineering problems.First, concerning comparative study between GA and EDA, we have proposed Pseudo-mutation and Pseudo-crossover as evaluation criteria for population-based probabilistic search algorithms. Then, using these criteria, we have evaluated GAs such as Simple GA, Spin Glass GA and Thermo-Dynamical GA and Bayesian Optimization Algorithm (BOA), a representative implementation of EDA.Further, from the viewpoint of evolution of distribution, we devised extension of real-coded GA for optimization of periodic function which is often appears in applications in engineering. It is based on the idea of embedding hyper sphere in the Euclidian space and applying the crossover in real-coded GA. Numerical experiments shows effectiveness of the proposed method.Since GA is applicable to optimization problems that involve noise, we have also applied GA to simulation-based optimization using random numbers. As a practical application, it has been applied optimization of group controller of elevator systems successfully. It can be also effective optimization tool for experiment-based optimization. In application of GA to elevator controller, implementation of controller requires decision making mechanisms and we have developed an exampler-based policy representation whose parameters are searched by GA. As well as simpler benchmarking problems, the exampler-based approach combined with GA works well in elevator control problem.
在本研究中,我们的目标是遗传算法(GA)作为优化方法,只利用函数值进行优化。本文研究了基于概率分布演化图的搜索点总体遗传算法,对类似的分布估计算法(EDA)进行了比较研究,并结合其在实际工程问题中的应用对遗传算法进行了改进。首先,在遗传算法和EDA算法的比较研究中,我们提出了伪变异和伪交叉作为基于群体的概率搜索算法的评价标准。然后,利用这些标准,我们评估了简单遗传算法、自旋玻璃遗传算法和热力学遗传算法以及贝叶斯优化算法(BOA),这是EDA的代表实现。进一步,从分布演化的角度出发,对工程中常见的周期函数优化问题进行了实编码遗传算法的扩展。它基于在欧几里德空间中嵌入超球的思想,并将交叉应用于实数编码遗传算法中。数值实验证明了该方法的有效性。由于遗传算法适用于涉及噪声的优化问题,我们也将遗传算法应用于使用随机数的基于仿真的优化。作为实际应用,该方法已成功地应用于电梯系统群控制器的优化。它也可以作为基于实验优化的有效优化工具。在将遗传算法应用于电梯控制器中,由于控制器的实现需要决策机制,我们开发了一种基于实例的策略表示,该策略表示的参数由遗传算法搜索。除了简单的基准问题外,基于实例的方法结合遗传算法在电梯控制问题中也有很好的效果。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Noisy Fitness Functions by means of Genetic Algorithms using History of Search (in Japanese)
使用搜索历史通过遗传算法优化噪声适应度函数(日语)
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:野林厚志;Yasuhito. Sano
- 通讯作者:Yasuhito. Sano
A Statistical Comparison Study between Genetic Algorithms and Bayesian Optimization Algorithms
遗传算法与贝叶斯优化算法的统计比较研究
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:N.Mori;M.Takeda;K.Matsumoto
- 通讯作者:K.Matsumoto
鈴木, 高橋, 佐野, 喜多, 須藤, マルコン: "遺伝的アルゴリズムによるマルチカーエレベータ制御ルールのシミュレーションベースド最適化"計測自動制御学会論文集. (掲載決定). (2004)
Suzuki、Takahashi、Sano、Kita、Sudo、Marcon:“使用遗传算法进行基于仿真的多轿厢电梯控制规则优化”,仪器与控制工程师协会论文集(2004 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoki Mori, Keinosuke Matsumoto: "Adaptation to a Dynamical Environment by means of the Environment Identifying Genetic Algorithm"Proceedings of 2003 Congress on Evolutionary Computation. 1626-1631 (2003)
Naoki Mori、Keinosuke Matsumoto:“通过环境识别遗传算法适应动态环境”2003 年进化计算大会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITA Hajime其他文献
KITA Hajime的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITA Hajime', 18)}}的其他基金
Supporting Collaborative Learning with Socialized Computer
使用社交计算机支持协作学习
- 批准号:
21650223 - 财政年份:2009
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Institutional Design and Evaluation of Liquidity Supply in Financial Market Using Participatory Artificial Markets
利用参与式人工市场进行金融市场流动性供给的制度设计与评估
- 批准号:
19300077 - 财政年份:2007
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Distributed Decision Making by Means of a Market Oriented Model
市场导向模型的分布式决策研究
- 批准号:
13650450 - 财政年份:2001
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Extension and Performance Improvement of Estimation of Distribution Algorithms with Graph Kernels
图核分布估计算法的扩展和性能改进
- 批准号:
17K00353 - 财政年份:2017
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of Estimation of Distribution Algorithms with graph kernels
用图核扩展分布算法的估计
- 批准号:
26330291 - 财政年份:2014
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension of the Estimation of Distribution Algorithms for Applicatin Areas and Individual Rrepresentation
应用领域和个体表示的分布估计算法的扩展
- 批准号:
23700267 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Designing reduced complexity estimation of distribution algorithms for communication systems and networks
为通信系统和网络设计降低复杂度的分布算法估计
- 批准号:
379299-2009 - 财政年份:2010
- 资助金额:
$ 7.74万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Designing reduced complexity estimation of distribution algorithms for communication systems and networks
为通信系统和网络设计降低复杂度的分布算法估计
- 批准号:
379299-2009 - 财政年份:2009
- 资助金额:
$ 7.74万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theory of Estimation-of-Distribution Algorithms (TEDA)
分布算法估计理论(TEDA)
- 批准号:
440936840 - 财政年份:
- 资助金额:
$ 7.74万 - 项目类别:
Research Grants














{{item.name}}会员




