Higher structures and deformations in representation theory
表示论中的高级结构和变形
基本信息
- 批准号:503982309
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2022
- 资助国家:德国
- 起止时间:2021-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research proposal is focusing on higher algebraic structures arsing from Hochschild, and related, cohomology and on higher categorical structures such as A-infinity categories. I aim to develop new and advanced techniques applicable to a wide range of problems in algebra, representation theory, topology, and geometry. Over the past few years, I have been investigating higher algebraic structures arising from singular Hochschild cohomology. I have shown that singular Hochschild cohomology is endowed with the same rich structure as classical Hochschild cohomology: a Gerstenhaber algebra in cohomology and a B-infinity algebra at the complex level. Suggested by this result, Keller proved that singular Hochschild cohomology is isomorphic to the Hochschild cohomology of the dg singularity category. He also conjectured that this isomorphism lifts to a quasi-isomorphism of B-infinity algebras. The first objective in my research proposal is to prove Keller's conjecture stated above. To achieve this, jointly with X. -W. Chen we introduced an explicit dg enhancement of singularities categories. In this proposal, we plan to construct a natural action of the B-infinity structure on singular Hochschild cohomology on this dg enhancement, which will yield a B-infinity quasi-isomorphism lifting Keller's isomorphism. The second objective is to explore further applications of singular Hochschild cohomology in topology and geometry. Jointly with M. Rivera we have shown that there is a rich higher algebraic structure on the singular Hochschild cohomology of any dg Frobenius algebra. In this proposal, we plan to show that this higher structure actually comes from a natural action of the Sullivan dg PROP, originally used to model operations in string topology. This proposal also concerns (A-infinity) deformations of (graded) algebras and their applications to representation theory. Recently jointly with S. Barmeier we have developed a combinatorial method to study the deformation theory of a path algebra of any finite quiver with relations, which allows us to easily compute particular classes of examples. The third objective aims to understand the behaviour of singularity categories under deformation quantisation, motivated by Keller's conjecture. Particularly, we expect an equivalence between singularity categories of a cyclic quotient singularity and of the deformation quantisation of a natural Poisson structure on the singularity. The fourth objective is to describe the A-infinity deformations of graded gentle algebras up to derived equivalence, in terms of their surface models. In particular, we expect that some A-infinity deformations correspond to doing surgery on the surface models.The fifth objective is to use our combinatorial method to study and verify Stroppel's conjecture for extended Khovanov arc algebras, which yields the intrinsic formality of these algebras.
该研究计划的重点是从Hochschild产生的高级代数结构,以及相关的上同调和高级范畴结构,如A-无穷范畴。我的目标是开发新的和先进的技术适用于广泛的问题,代数,表示论,拓扑和几何。在过去的几年里,我一直在研究奇异Hochschild上同调所产生的高等代数结构。我已经证明了奇异Hochschild上同调被赋予了与经典Hochschild上同调相同的丰富结构:一个Gerstenhaber代数的上同调和一个B-无穷代数的复水平。根据这个结果,凯勒证明了奇异Hochschild上同调同构于dg奇异范畴的Hochschild上同调。他还指出,这种同构升降机准同构的B-无限代数。我的研究计划的第一个目标是证明上述凯勒猜想。为了实现这一点,与X。-W.我们引入了奇点范畴的一个显式dg增强。在这个提议中,我们计划在这个dg增强上构造一个B-无穷结构对奇异Hochschild上同调的自然作用,这将产生一个提升Keller同构的B-无穷拟同构。 第二个目标是探索奇异Hochschild上同调在拓扑学和几何学中的进一步应用。 与M。里维拉证明了任意dg Frobenius代数的奇异Hochschild上同调都有丰富的高等代数结构。在这个提议中,我们计划表明,这种更高的结构实际上来自沙利文dg PROP的自然动作,最初用于模拟字符串拓扑中的操作。这个建议还涉及(分次)代数的(A-无穷)变形及其在表示论中的应用。最近,与S。Barmeier,我们已经开发了一种组合方法来研究变形理论的道路代数的任何有限的关系,这使我们能够很容易地计算特定类别的例子。第三个目标旨在了解变形量子化下的奇异性类别的行为,由凯勒猜想的动机。特别是,我们期望一个循环商奇异性和奇异性的自然泊松结构的变形量化的奇异性类别之间的等价性。第四个目标是描述A-无穷变形的分次温柔代数导出等价,在他们的表面模型。特别地,我们期望一些A-无穷变形对应于在表面模型上做手术。第五个目标是用我们的组合方法研究和验证扩展Khovanov弧代数的Stroppel猜想,从而得到这些代数的内在形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Zhengfang Wang其他文献
Dr. Zhengfang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Crumple Dynamics and Interactions Mediating Elastic Deformations of Structures
调节结构弹性变形的压皱动力学和相互作用
- 批准号:
2210797 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2211916 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
- 批准号:
2201270 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Research on the relationship between canonical metrics and deformations of complex structures on compact Kahler manifolds
紧卡勒流形上复杂结构正则度量与变形关系研究
- 批准号:
22K03316 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extreme deformations of magneto- and electro-active membranes: A framework to model instabilities due to large multi-physics loads in thin structures
磁活性膜和电活性膜的极端变形:模拟薄结构中大量多物理载荷引起的不稳定性的框架
- 批准号:
EP/V030833/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
The role of cracks on the out-of-plane rotations, plasticity and fracture in kirigami structures
裂纹对剪纸结构面外旋转、塑性和断裂的作用
- 批准号:
18K18065 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Special functions and combinatorics arising from parametric deformations of representation-theoretical structures
由表示理论结构的参数变形产生的特殊函数和组合数学
- 批准号:
18K03248 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Health monitoring scheme of building structures based on only the data of measured inter-story drift deformations
仅基于层间位移变形实测数据的建筑结构健康监测方案
- 批准号:
26420564 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: A Comprehensive Approach for Investigating the Effects of Near-Fault Dynamic Ground Deformations on Engineering Structures
职业:研究近断层动态地面变形对工程结构影响的综合方法
- 批准号:
1360734 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant