Artificial Intelligence for Intermetallic Materials

金属间材料的人工智能

基本信息

项目摘要

Materials science contributes to facing the challenges of our society and particularly the climate change by delivering highly optimized structural and functional materials. The relevant material classes range from structural materials like superalloys and light-weight steels for increased efficiency in aviation, automobiles and power generation to functional materials like solar cell and battery materials for electric-power generation and storage respectively. The key challenge for materials design and optimization is the prediction of the thermodynamic stability of a compound, i.e. the prediction of the energetically stable crystal structure from only its chemical composition. The enormous numerical effort involved in this prediction sets a fundamental limit on the computational exploration of materials. While density-functional theory calculation (DFT) revolutionized materials science and provides highly reliable predictions of thermodynamic stability, it is still too computationally expensive to explore the chemical and structural complexity that is needed for many technologically relevant materials. With the advent of data-driven scientific discovery, we are witnessing the change to the fourth paradigm in science. The enormous potential of data exploitation with artificial intelligence (AI) will change many fields of our society ranging from health to environment and technology. One of the fields that are changing gears with AI already now is materials science. In this project, we apply modern AI techniques to the prediction of the thermodynamic stability of intermetallic phases that play a central role in superalloys and light-weight steels. As a novel and unique approach, we will develop and apply a hybrid-AI ecosystem with broader applicability, in which descriptors will be designed to include (i) physical properties like atomic radius and valence electrons number, (ii) local geometric information, (iii) qualitative domain knowledge of interatomic interactions in terms of physical models, (iv) quantitative domain-knowledge of chemical bond-formation from DFT, and (v) quantitative domain knowledge on the structure-energy relation. These descriptors will be used with different regression models in combination with dimensionality reduction, hyper-optimization and importance analysis. This enables us to construct hybrid-AI models that are sufficiently robust to explore chemically and structurally complex topologically close-packed phases that are not accessible otherwise. The predictions of the hybrid-AI on structural stability and sublattice occupancy of these intermetallic materials will be confirmed by experimental measurements within this project. We expect that this hybrid-AI for materials will initiate new promising directions of research for the benefit of materials science in France and Germany.
材料科学通过提供高度优化的结构和功能材料,为应对我们社会的挑战,特别是气候变化做出了贡献。相关的材料类别包括用于提高航空、汽车和发电效率的超合金和轻质钢等结构材料,以及分别用于发电和储能的太阳能电池和电池材料等功能材料。材料设计和优化的关键挑战是预测化合物的热力学稳定性,即仅从其化学组成预测能量稳定的晶体结构。在这个预测中涉及的巨大的数值工作设置了一个基本的限制材料的计算探索。虽然密度泛函理论计算(DFT)彻底改变了材料科学,并提供了高度可靠的热力学稳定性预测,但它仍然太昂贵,无法探索许多技术相关材料所需的化学和结构复杂性。随着数据驱动的科学发现的出现,我们正在见证科学中第四范式的变化。人工智能(AI)数据开发的巨大潜力将改变我们社会的许多领域,从健康到环境和技术。现在,人工智能正在改变的领域之一是材料科学。在这个项目中,我们将现代人工智能技术应用于预测在高温合金和轻质钢中起核心作用的金属间相的热力学稳定性。作为一种新颖而独特的方法,我们将开发和应用一个具有更广泛适用性的混合人工智能生态系统,其中描述符将被设计为包括(i)物理性质,如原子半径和价电子数,(ii)局部几何信息,(iii)物理模型中原子间相互作用的定性领域知识,(iv)DFT中化学键形成的定量领域知识,以及(v)关于结构-能量关系的定量领域知识。这些描述符将与不同的回归模型结合使用,并结合降维、超优化和重要性分析。这使我们能够构建足够强大的混合人工智能模型,以探索化学和结构复杂的拓扑紧密堆积相,这些相是无法以其他方式访问的。混合人工智能对这些金属间化合物材料的结构稳定性和亚晶格占有率的预测将通过该项目中的实验测量来证实。我们预计,这种用于材料的混合人工智能将为法国和德国的材料科学带来新的有前途的研究方向。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Thomas Hammerschmidt其他文献

Privatdozent Dr. Thomas Hammerschmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Thomas Hammerschmidt', 18)}}的其他基金

Ab initio based calculation of the stability of selected TCP precipitates in steels: Temperature and interface effects
基于从头计算钢中选定 TCP 析出物稳定性的计算:温度和界面效应
  • 批准号:
    289654611
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Atomistic simulations of H trapping at grain boundaries in ferritic alloys
铁素体合金晶界处 H 捕获的原子模拟
  • 批准号:
    535248809
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
University of West London and Turing Intelligence Technology Limited KTP (23-24 R3)
西伦敦大学与图灵智能科技有限公司KTP (23-24 R3)
  • 批准号:
    10082602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Knowledge Transfer Network
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Interactions of Human and Machine Intelligence in Modern Economic Systems
现代经济系统中人与机器智能的相互作用
  • 批准号:
    DP240100506
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了