Advanced Bipolar Membranes for Energy and Electrodialysis Technology

用于能源和电渗析技术的先进双极膜

基本信息

项目摘要

Bipolar membranes dissociate water (H2O à H++OH-) at the interface between a proton anda hydroxide conductor under applied bias. This is being exploited industrially in electrodialysis to produce acid and base, and could be of great value for water and CO2 electrolyzers. Recently, some of us introduced a new BPM assembly and characterization platform, based on membrane electrode assemblies (MEAs), which are used for water electrolyzers and fuel cells, and which continuously apply pressure over all BPM components during operation. This way, we designed highly active BPMs with record-high current densities of > 3 A·cm-2 – at least 20 times larger than previous results. However, despite this progress, the performance is not yet at levels needed for new applications. For example, the best BPM dissociates water with an overpotential of ~ 500 mV at 2 A·cm-2, but in water electrolysis the total overpotential must be < 300 mV at 2 A·cm-2, including OER and HER overpotentials. Conversely, we need to better understand the BPM junction, not only for BPM electrolyzers and fuel cells, but also electrodialysis. For the latter, self-supported, free-standing BPMs remain of key significance, as MEAs are too bulky to be used in stacks comprising 50-100 in-series connected BPMs. However, currently, the performance and structural differences between traditional, freestanding BPMs and ones in the MEA are not known. To strengthen scientific exchange and accelerate BPM R&D we need to understand these differences. In APRiCOT, the German BPM experts at RWTH Aachen (RWTH) and the Fritz Haber Institute (FHI) will leverage the world-expert knowledge in nanoassembly and (2D) materials growth of the French CNRS Centre Interdiciplinaire de Nanoscience de Marseille (CINaM) and the Institut Europeen des Membranes (IEM) to obtain unprecedented control and understanding of the BPM junction. This in turn might lead to high performing small-scale lab devices that motivate more BPM R&D in the future. More specifically, FHI will leverage the MEA compression and integrate close-packed nanoparticle assemblies and 3D-patterned membranes provided by CINaM and (ion-selective) 2D materials and ALD thin-layers provided by IEM into MEA-BPMs. This way, the impact of junction thickness, morphology, catalyst coverage and ion-selectivity will be studied. This enables FHI and RWTH to develop improved Multiphysics models alongside experimental results. Then, FHI’s and RWTH’s experimental and simulation results are fed back to IEM and CINaM for further materials optimization. Further, FHI and RWTH will study the structural differences and similarities between MEA- and free-standing BPMs to strengthen scientific exchange and cross-fertilization of ideas between these two platforms. Finally, RWTH will study the water transport and aim at translating FHI’s recent high current density BPM-MEAs into free-standing BPMs, in particular by exploring selected materials from IEM and CINaM.
双极膜在施加偏压的情况下在质子和氢氧根导体之间的界面解离水(H2O <e:1> H++OH-)。这在工业上被用于电渗析生产酸和碱,并且对水和二氧化碳电解槽有很大的价值。最近,我们中的一些人推出了一种新的BPM组件和表征平台,该平台基于膜电极组件(MEAs),用于水电解槽和燃料电池,并在运行过程中持续对所有BPM组件施加压力。通过这种方式,我们设计出了具有创纪录的高电流密度(bbbb3 A·cm-2)的高活性bpm,比以前的结果至少大20倍。然而,尽管取得了这些进展,性能仍未达到新应用所需的水平。例如,最佳BPM解离水时,在2 A·cm-2下的过电位为~ 500 mV,但在水电解过程中,总过电位必须小于300 mV,包括OER和HER过电位。相反,我们需要更好地理解BPM连接,不仅是BPM电解槽和燃料电池,还有电渗析。对于后者,自支持的、独立的bpm仍然具有关键意义,因为mea过于笨重,无法用于由50-100个串联连接的bpm组成的堆栈。然而,目前,传统的、独立的bpm与MEA中的bpm之间的性能和结构差异尚不清楚。为了加强科学交流和加速BPM研发,我们需要了解这些差异。在APRiCOT中,亚琛工业大学(RWTH)和弗里茨哈伯研究所(FHI)的德国BPM专家将利用法国CNRS马赛纳米科学跨学科中心(CINaM)和欧洲膜研究所(IEM)在纳米组装和(2D)材料生长方面的世界专家知识,获得对BPM连接的前所未有的控制和理解。这反过来可能会导致高性能的小型实验室设备,从而在未来激发更多的BPM研发。更具体地说,富力将利用MEA压缩,将紧密堆积的纳米颗粒组件和由CINaM提供的3d图案膜,以及由IEM提供的(离子选择性)2D材料和ALD薄层集成到MEA- bpm中。通过这种方式,将研究结厚、形貌、催化剂覆盖率和离子选择性的影响。这使得富士重工和RWTH能够在实验结果的基础上开发改进的多物理场模型。然后,将FHI和RWTH的实验和仿真结果反馈给IEM和CINaM进行进一步的材料优化。此外,富力重工和工业大学还将研究MEA-独立bpm与独立bpm在结构上的异同,以加强这两个平台之间的科学交流和思想交流。最后,工业大学将研究水运,并致力于将富力重工最近的高电流密度bpm - mea转化为独立的bpm,特别是通过探索IEM和CINaM的选定材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Sebastian Zeki Oener, Ph.D.其他文献

Dr. Sebastian Zeki Oener, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Sebastian Zeki Oener, Ph.D.', 18)}}的其他基金

Surface - Gated Charge Carrier - Selective Nanocontacts in Photoelectrochemical Catalysis
表面-门控电荷载体-光电化学催化中的选择性纳米接触
  • 批准号:
    408246589
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

双极性躁郁症(Bipolar Disorder)的人诱导多能干细胞模型的建立和神经病理研究
  • 批准号:
    31471020
  • 批准年份:
    2014
  • 资助金额:
    87.0 万元
  • 项目类别:
    面上项目

相似海外基金

Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
  • 批准号:
    10088165
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
PFI-TT: A Smart Bipolar Surgical Device for Electrosurgery
PFI-TT:用于电外科的智能双极手术设备
  • 批准号:
    2329783
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ADMIRED - Ai Driven MonItoRing Equipment for Bipolar Disorder
钦佩 - 人工智能驱动的双相情感障碍监测设备
  • 批准号:
    10089421
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Financial Activity Data as an Objective Behavioral Marker in Bipolar Disorder: A Feasibility and Acceptance Study
金融活动数据作为双相情感障碍的客观行为标志:可行性和可接受性研究
  • 批准号:
    10575894
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Co-designing a living umbrella review platform informing guidelines and care for bipolar disorder
共同设计一个生活伞审查平台,为双相情感障碍提供指导和护理
  • 批准号:
    487901
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Psilocybin Assisted Psychotherapy for Bipolar Depression: An fMRI Emotional-Processing Pilot Study
裸盖菇素辅助双相抑郁心理治疗:功能磁共振成像情绪处理试点研究
  • 批准号:
    486939
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Miscellaneous Programs
Extremely low energy loss bipolar power semiconductor device
极低能量损耗的双极功率半导体器件
  • 批准号:
    23K03795
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of molecular mechanisms of bipolar disorder focused on a novel splicing variant in mitochondria
双相情感障碍的分子机制研究重点关注线粒体中的新型剪接变异
  • 批准号:
    23K07017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pilot trial of time restricted eating to support an adaptive innovative clinical trial of combined chronotherapies for mania in bipolar disorder
限时饮食试点试验,以支持双相情感障碍躁狂症联合时间疗法的适应性创新临床试验
  • 批准号:
    487676
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Application of carbon nanotube bipolar-FET to virus inspection based on DAN detection
碳纳米管双极场效应晶体管在基于DAN检测的病毒检测中的应用
  • 批准号:
    23H01424
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了