learnINg versaTile lEgged locomotioN wiTh actIve perceptiON

学习具有主动感知的多功能腿部运动

基本信息

项目摘要

Mobile robotics is expected to have a rapid development in the following years. The design of efficient mobile robotics platforms will open various applications in different scenarios and could substitute humans in laborious, repetitive, or dangerous tasks. Among all mobile robotics platforms, legged robots are of particular interest. Their structure allows them to navigate challenging areas differently from wheeled platforms that require flat ground, e.g., when the ground is irregular, in the presence of debris, or in tight spaces, and carry heavy payloads, differently from other bioinspired approaches. The objective of this project is to develop the fundamental methodology to design highly autonomous legged platforms. The desired solution should adapt to demanding environments with low clearance and rough terrain, enabling the robot to avoid actively faulty states and recover autonomously. To significantly improve the autonomy of the gait controllers, we need to have a deeper look at some fundamental aspects of the interaction of the environment: perception and action. We will exploit modern machine learning techniques to create a more general framework's theoretical and practical foundations. The key novelty of our approach lies in the joint analysis of learning for perception and action. Indeed, there are many important reasons to consider action and perception jointly. Researchers demonstrated that active and interactive perception is fundamental to improving the ability to perceive and estimate quantities that cannot be measured by passively sensing the environment, particularly in manipulation tasks. Furthermore, to build strong algorithmic foundations in perception and locomotion learning, it is crucial to consider what type of input and output data is produced by each module, how the data is processed, and which kind of representation is more suitable for the learning process. This integrated solution will enable our system to be aware of the surrounding environment, react to unexpected terrain properties avoiding slippage and failures, sense contact with the surrounding obstacles, and exploit this physical interaction to locomote efficiently through narrow passages, going beyond current state-of-the-art methods. The final objective of our research is to verify, employing high-quality scientific evaluation standards and benchmarks, the methodology. To better highlight the developed solution's strengths and eventual drawbacks, we will test the proposed system in a cave exploration scenario. Our objective is to demonstrate the solution's effectiveness on a task that goes beyond existing locomotion test scenarios and provide an easy way to compare our platform with different commercially available hardware and software solutions.
预计移动的机器人技术在未来几年内将得到快速发展。高效的移动的机器人平台的设计将在不同的场景中打开各种应用,并可能在繁重,重复或危险的任务中取代人类。在所有的移动的机器人平台中,腿式机器人是特别感兴趣的。它们的结构使它们能够在具有挑战性的区域航行,不同于需要平坦地面的轮式平台,例如,当地面是不规则的,在碎片的存在下,或在狭小的空间,并携带沉重的有效载荷,不同于其他生物启发的方法。本项目的目标是开发设计高度自主腿平台的基本方法。理想的解决方案应适应低间隙和粗糙地形的苛刻环境,使机器人能够避免主动故障状态并自主恢复。为了显著提高步态控制器的自主性,我们需要更深入地研究环境相互作用的一些基本方面:感知和行动。我们将利用现代机器学习技术来创建一个更通用的框架的理论和实践基础。我们的方法的关键新奇在于感知和行动的学习的联合分析。事实上,有许多重要的理由需要同时考虑行动和感知。研究人员证明,主动和交互式感知是提高感知和估计无法通过被动感知环境来测量的量的能力的基础,特别是在操纵任务中。此外,为了在感知和运动学习中建立强大的算法基础,考虑每个模块产生什么类型的输入和输出数据、如何处理数据以及哪种表示更适合学习过程至关重要。这种集成的解决方案将使我们的系统能够感知周围环境,对意外的地形特性做出反应,避免滑动和故障,感知与周围障碍物的接触,并利用这种物理相互作用有效地通过狭窄的通道,超越当前最先进的方法。我们研究的最终目的是采用高质量的科学评价标准和基准来验证方法。为了更好地突出开发的解决方案的优点和最终的缺点,我们将在洞穴勘探场景中测试所提出的系统。我们的目标是证明该解决方案在超越现有运动测试场景的任务上的有效性,并提供一种简单的方法来比较我们的平台与不同的商用硬件和软件解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Jan Reinhard Peters, Ph.D.其他文献

Professor Jan Reinhard Peters, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Jan Reinhard Peters, Ph.D.', 18)}}的其他基金

AI empowered general purpose assistive robotiC system for dexterous object manipulation tHrough embodIed teleopeRation and shared cONtrol
人工智能赋能通用辅助机器人系统,通过具体远程操作和共享控制实现灵巧的物体操纵
  • 批准号:
    442430069
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Improving the understanding of neuromuscular gait control using deep reinforcement learning
使用深度强化学习提高对神经肌肉步态控制的理解
  • 批准号:
    456562029
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Metric-based imitation learning in humans and robots
人类和机器人基于度量的模仿学习
  • 批准号:
    449154371
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Informed Exploration in Reinforcement Learning via Intuitive Physics Model Reasoning
通过直观物理模型推理进行强化学习的知情探索
  • 批准号:
    516414603
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

A versatile machine learning image recognition software for automating synchrotron Macromolecular Beamlines
用于自动化同步加速器高分子束线的多功能机器学习图像识别软件
  • 批准号:
    BB/Z514329/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Versatile Synthesis of Chlorophylls and Bacteriochlorophylls for Fundamental Studies in Photosynthesis
用于光合作用基础研究的叶绿素和细菌叶绿素的多功能合成
  • 批准号:
    2348052
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Microplasmas for Highly Compact and Versatile RF Electronics
事业:用于高度紧凑和多功能射频电子器件的新型微等离子体
  • 批准号:
    2337815
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Investigation of versatile joining processes for the manufacturing of hybrid components in an industrial environment (T01#)
研究工业环境中混合部件制造的通用连接工艺(T01
  • 批准号:
    511455049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios (Transfer Project)
PlantSea-Punnet: a versatile seaweed-based packaging
PlantSea-Punnet:一种基于海藻的多功能包装
  • 批准号:
    10043508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
21ENGBIO A versatile optogenetic toolbox to control cell mechanics for cell and tissue morphogenesis
21ENGBIO 多功能光遗传学工具箱,用于控制细胞和组织形态发生的细胞力学
  • 批准号:
    BB/W011123/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
  • 批准号:
    2416375
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
  • 批准号:
    10721086
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Equipment: MRI: Track 1: Acquisition of SAXS/WAXS/GISAXS/GIWAXS instrument with versatile, controlled sample environments
设备:MRI:轨道 1:获取具有多功能、受控样品环境的 SAXS/WAXS/GISAXS/GIWAXS 仪器
  • 批准号:
    2319203
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了