Improving the understanding of neuromuscular gait control using deep reinforcement learning

使用深度强化学习提高对神经肌肉步态控制的理解

基本信息

项目摘要

Musculoskeletal disorders are one of the leading causes of human disability. The risk of such disabilities is increasing in many countries with an aging population like Germany. Assistive devices (e.g. exoskeletons, prosthesis, etc.) can facilitate human locomotor function and improve walking performance (e.g. balance, metabolic cost, etc.). It has been shown that human walking performance can be improved by the exoskeleton with subject specific control parameters using the human-in-the-loop (HIL) optimization approach. However, the HIL approach is limited in terms of gait diversity (e.g. different walking speeds) and optimization time (e.g. one hour of continuous walking on a treadmill). The large amount of time required to find the optimal parameters using a HIL-like method might not be feasible and/or practical (e.g. for elderly people and patients). A dynamic neuromuscular gait model capable of generating rich human-like locomotion behaviors at kinematic, kinetic and muscle levels can significantly reduce the HIL optimization time by optimizing the parameters first in the simulation and then transferring it to the hardware setup. Therefore in this project, considering the complexity of human neuromuscular control, we propose to develop a deep reinforcement learning (deep-RL) based framework capable of generating rich individual specific human walking behaviors. By simulating musculoskeletal locomotion dynamics, we expect superior predictive capabilities at three levels: (1) individual steady and non-steady gait, (2) response dynamics to unexpected perturbations, and (3) gait assistance dynamics. Here, the learned neural network of the model represents (in a schematic way) the spinal cord neural circuitry mapping sensory inputs to muscle stimulations. We plan to use the individual human rich gait data for our model to learn the walking behaviors across all the three aspects listed above. The quality of the learned gait model will be evaluated in perturbed gait scenarios and assistive gait scenarios using a leg exoskeleton. The proposed deep-RL based framework will not only improve the understanding of human neuromuscular gait control but also aid in developing AI-based gait controllers which could then be transferred to the hardware system with minimal online optimization.
肌肉骨骼疾病是导致人类残疾的主要原因之一。在德国等许多人口老龄化的国家,此类残疾的风险正在增加。辅助设备(如外骨骼、假肢等)可以促进人类的运动功能和改善步行性能(例如平衡、代谢成本等)。研究表明,采用人在环(HIL)优化方法,外骨骼具有特定于受试者的控制参数,可以改善人的行走性能。然而,HIL方法在步态多样性(例如不同的步行速度)和优化时间(例如在跑步机上连续步行一小时)方面受到限制。使用类似于HIL的方法寻找最佳参数所需的大量时间可能是不可行和/或不实际的(例如对于老年人和病人)。动态神经肌肉步态模型能够在运动学、运动学和肌肉层面产生丰富的类似人类的运动行为,通过首先在仿真中优化参数,然后将其转移到硬件设置,可以显著减少HIL优化时间。因此,在本项目中,考虑到人类神经肌肉控制的复杂性,我们提出了一种基于深度强化学习(Depth-RL)的框架,能够生成丰富的个人特定的人类行走行为。通过模拟肌肉骨骼的运动动力学,我们期望在三个水平上具有更好的预测能力:(1)个人稳定和非稳定步态,(2)对意外扰动的反应动力学,以及(3)步态辅助动力学。在这里,模型的学习神经网络表示(以示意图的方式)将感觉输入映射到肌肉刺激的脊髓神经回路。我们计划使用人类个体丰富的步态数据来学习上述三个方面的步行行为。学习的步态模型的质量将在扰动步态场景和使用腿部外骨骼的辅助步态场景中进行评估。所提出的基于深层RL的框架不仅将提高对人类神经肌肉步态控制的理解,而且有助于开发基于AI的步态控制器,然后这些控制器可以通过最小的在线优化转移到硬件系统中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Jan Reinhard Peters, Ph.D.其他文献

Professor Jan Reinhard Peters, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Jan Reinhard Peters, Ph.D.', 18)}}的其他基金

AI empowered general purpose assistive robotiC system for dexterous object manipulation tHrough embodIed teleopeRation and shared cONtrol
人工智能赋能通用辅助机器人系统,通过具体远程操作和共享控制实现灵巧的物体操纵
  • 批准号:
    442430069
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
learnINg versaTile lEgged locomotioN wiTh actIve perceptiON
学习具有主动感知的多功能腿部运动
  • 批准号:
    506123304
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Metric-based imitation learning in humans and robots
人类和机器人基于度量的模仿学习
  • 批准号:
    449154371
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Informed Exploration in Reinforcement Learning via Intuitive Physics Model Reasoning
通过直观物理模型推理进行强化学习的知情探索
  • 批准号:
    516414603
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the neurodevelopmental effects of youth tackle football participation
了解青少年参与橄榄球运动对神经发育的影响
  • 批准号:
    10742262
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Mechanisms of Fibrosis in Muscular Dystrophies
了解肌营养不良症纤维化的机制
  • 批准号:
    10718804
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10833734
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Understanding the Role of the Integrated Stress Response in tRNA Synthetase-associated Charcot-Marie-Tooth Disease
了解综合应激反应在 tRNA 合成酶相关夏科-马里-图思病中的作用
  • 批准号:
    10740335
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Stable Isotope Approaches to the Understanding of Potassium Homeostasis
稳定同位素方法了解钾稳态
  • 批准号:
    10431555
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Stable Isotope Approaches to the Understanding of Potassium Homeostasis
稳定同位素方法了解钾稳态
  • 批准号:
    10592405
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Three-model platform for understanding DMD epigenetic mechanisms and advancing small molecule therapies
用于了解 DMD 表观遗传机制和推进小分子疗法的三模型平台
  • 批准号:
    10578675
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Three-model platform for understanding DMD epigenetic mechanisms and advancing small molecule therapies
用于了解 DMD 表观遗传机制和推进小分子疗法的三模型平台
  • 批准号:
    10341141
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Identifying and understanding the role of repeat RNAs and RAN proteins in Alzheimer's disease
识别和理解重复 RNA 和 RAN 蛋白在阿尔茨海默病中的作用
  • 批准号:
    10055279
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Understanding role of C9orf72 in neuromuscular development in zebrafish
了解 C9orf72 在斑马鱼神经肌肉发育中的作用
  • 批准号:
    556948-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了