Metric-based imitation learning in humans and robots
人类和机器人基于度量的模仿学习
基本信息
- 批准号:449154371
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Learning by imitation is a versatile and rapid mechanisms to transfer motor skills from one intelligent agent (humans, animals and robots) to another – which can be observed in Nature as well as applied in form of “programming by demonstration” in artificial systems. Infants, for example, react to the perception of facial gestures by producing similar behavior. In robotics, computational approaches to motor learning by imitation are long considered the most promising path to success. The development of autonomous robotic systems that can learn from human demonstrations to imitate a desired behavior - rather than being manually programmed - has huge technological potential with applications in manufacturing, elderly care and the service industry and is currently at the focus of robotics research. Unlike trial-and-error-based learning methods such as reinforcement learning, imitation allows rapid learning. Approaches to imitation learning have delivered huge success ranging from helicopter acrobatics, high-speed arm skills, haptic control, gestures, manipulation to legged locomotion. The machine learning algorithms that make imitation learning possible are well studied.Surprisingly, despite all of these impressive successes in the acquisition of new motor skills in robotic systems by imitation learning, fundamental scientific research questions in imitation learning of central importance have remained open for decades. Among such core questions is the one of the correspondence problem: how can one agent (the learner or imitator) produce a similar behavior - in some aspect - with behavior it perceives in another agent (the expert or demonstrator) given that the two agents have different kinematic and dynamics (body morphology, degrees of freedom, constraints, joints and actuators, torque limits), or in other words, cover different state spaces?Thus, the goal of this project is to use a metric understanding of embodiment to improve robotic motor skills through expert observations. We aim to shed light into important fundamental research questions on the (i) role of learner’s embodiment in statistical imitation learning, (ii) how the correspondence problem can be formalized properly, (iii) how can the behavior transferability vs task complexity dilemma be resolved and (iv) how to develop new statistical deep imitation learning algorithms based on these insights.
通过模仿学习是一种将运动技能从一个智能代理(人类,动物和机器人)转移到另一个智能代理的通用和快速机制-这可以在自然界中观察到,也可以在人工系统中以“演示编程”的形式应用。例如,婴儿对面部表情的感知做出反应,产生类似的行为。在机器人技术中,通过模仿进行运动学习的计算方法长期以来被认为是最有前途的成功之路。自主机器人系统的开发可以从人类演示中学习模仿所需的行为-而不是手动编程-具有巨大的技术潜力,可应用于制造业,老年人护理和服务业,目前是机器人研究的重点。与强化学习等基于试错的学习方法不同,模仿允许快速学习。模仿学习的方法已经取得了巨大的成功,从直升机杂技,高速手臂技能,触觉控制,手势,操纵到腿部运动。令人惊讶的是,尽管机器人系统通过模仿学习获得新的运动技能取得了令人印象深刻的成功,但模仿学习中至关重要的基础科学研究问题几十年来一直没有解决。在这些核心问题中,有一个是对应问题:一个特工怎么可能(学习者或模仿者)产生类似的行为-在某些方面-与它在另一个代理中感知到的行为(专家或演示者)鉴于两个代理具有不同的运动学和动力学(身体形态,自由度,约束,关节和执行器,扭矩限制),或者换句话说,覆盖不同的状态空间?因此,本项目的目标是使用对实施例的度量理解,通过专家观察来提高机器人运动技能。我们的目标是揭示重要的基础研究问题:(i)学习者的体现在统计模仿学习中的作用,(ii)如何正确地形式化对应问题,(iii)如何解决行为可转移性与任务复杂性的困境,以及(iv)如何基于这些见解开发新的统计深度模仿学习算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Jan Reinhard Peters, Ph.D.其他文献
Professor Jan Reinhard Peters, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Jan Reinhard Peters, Ph.D.', 18)}}的其他基金
Improving the understanding of neuromuscular gait control using deep reinforcement learning
使用深度强化学习提高对神经肌肉步态控制的理解
- 批准号:
456562029 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
learnINg versaTile lEgged locomotioN wiTh actIve perceptiON
学习具有主动感知的多功能腿部运动
- 批准号:
506123304 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
AI empowered general purpose assistive robotiC system for dexterous object manipulation tHrough embodIed teleopeRation and shared cONtrol
人工智能赋能通用辅助机器人系统,通过具体远程操作和共享控制实现灵巧的物体操纵
- 批准号:
442430069 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Informed Exploration in Reinforcement Learning via Intuitive Physics Model Reasoning
通过直观物理模型推理进行强化学习的知情探索
- 批准号:
516414603 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10610971 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Human-like automated radiotherapy treatment planning via imitation learning
通过模仿学习制定类似人类的自动放射治疗计划
- 批准号:
10406863 - 财政年份:2021
- 资助金额:
-- - 项目类别:
The evaluation of a multi-site novel imitation based animal assisted intervention for children with developmental disabilities and their family dog
对发育障碍儿童及其家犬的多点新型模仿动物辅助干预的评估
- 批准号:
10380622 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The evaluation of a multi-site novel imitation based animal assisted intervention for children with developmental disabilities and their family dog
对发育障碍儿童及其家犬的多点新型模仿动物辅助干预的评估
- 批准号:
9904106 - 财政年份:2020
- 资助金额:
-- - 项目类别:
The evaluation of a multi-site novel imitation based animal assisted intervention for children with developmental disabilities and their family dog
对发育障碍儿童及其家犬的多点新型模仿动物辅助干预的评估
- 批准号:
10613509 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Direct Examination of Imitation-Based Learning in Autism
自闭症模仿学习的直接检查
- 批准号:
9035685 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Comprehensive realization of imitation related tasks of developmental scales based on partially observable Markov decision process theory
基于部分可观马尔可夫决策过程理论的发育尺度模仿相关任务的综合实现
- 批准号:
15K00341 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a brain information processing imitation based autonomous behavior model with amygdala model
利用杏仁核模型开发基于大脑信息处理模仿的自主行为模型
- 批准号:
25330287 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
RI: Small: Probabilistic Goal-Based Imitation Learning
RI:小:基于概率目标的模仿学习
- 批准号:
1318733 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Building Fundamental Theory of Imitation Based On Topological Similarity in Bodily Movements
建立基于身体运动拓扑相似性的模仿基本理论
- 批准号:
25560297 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research