Renormalisation under the prism of meromorphic functions in several variables

多变量亚纯函数棱镜下的重正化

基本信息

项目摘要

Meromorphic functions are central tools in the context of renormalisation and meromorphic functions in several variables with linear poles naturally arise from a multiparameter renormalisation. They are ubiquous in mathematics and physics, where they appear in various disguises such as Feynman integrals, discrete sums on cones and multizeta functions. Thus their study touches on various areas of mathematics, including number theory, toric geometry, category theory and infinite-dimensional topology. When compared with the more commonly used one parameter renormalisation, a multiparameter renormalisation operates a shift from the study of the (co-) algebraic structure underlying the subdivergences to be renormalised to the study of the pole structure of the resulting meromorphic germs. Hence, algebras of meromorphic functions in several variables provide a common tool to handle various renormalisation problems. In this framework, the renormalisation takes place in form of a generalised evaluator, a linear form on an algebra of meromorphic functions, which extends the ordinary evaluation at a point to an appropriate evaluation at poles. A classification of the generalised evaluators thanks to a group playing the role of a renormalisation group is the first main objective of this project. Such a classification can be carried out thanks to an underlying locality relation, a symmetric binary relation on meromorphic germs which has a separating role, serving the purpose of separating the subdivergences to be renormalised. Matching the needs of a multiparameter renormalisation requires enhancing the algebraic locality framework developed in previous work to a topological locality setup as well as generalising the related analytic tools beyond the orthogonality binary relation, which is the second challenging objective in this project. Our third aim is the study of the pole structure of regularised amplitudes derived from graphs decorated by holomorphic families of classical pseudodifferential operators and to capture their pole structure by universal properties of graphs using PROPs and their generalisations.
亚纯函数是重整化和多元亚纯函数中具有线性极点的重要工具 自然地由多参数重整化产生。它们在数学和物理学中无处不在,它们以各种伪装出现,如费曼积分,锥上的离散和和多zeta函数。因此,他们的研究涉及数学的各个领域,包括数论,环面几何,范畴论和无限维拓扑。当与更常用的一个参数重整化相比,多参数重整化操作的转移,从研究的(共)代数结构的subdivergences要重整的研究所产生的亚纯芽的极点结构。因此,多元亚纯函数代数提供了一个通用的工具来处理各种重整化问题。在这个框架中,重正化发生在一个广义的评估,一个线性形式的代数亚纯函数,它扩展了普通的评价在一个点上的适当的评价极点。该项目的第一个主要目标是通过一个扮演重新规范化小组角色的小组对一般评估人员进行分类。这样的分类可以进行感谢一个潜在的局部性关系,对称的二元关系的亚纯芽具有分离的作用,服务于分离的subdivergences要重新正规化。匹配的多参数重正化的需要,需要加强在以前的工作中开发的代数局部性框架的拓扑局部性设置,以及概括相关的分析工具超越正交二元关系,这是在这个项目中的第二个具有挑战性的目标。我们的第三个目标是研究正则振幅的极点结构,这些振幅来自于由经典伪微分算子的全纯族装饰的图,并利用PROPs及其推广来捕获它们的极点结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Sylvie Paycha, Ph.D.其他文献

Professorin Dr. Sylvie Paycha, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Sylvie Paycha, Ph.D.', 18)}}的其他基金

The Euler-Maclaurin formula and Birkhoff-Hopf factorisation: discretisation and quantisation Extension: Enhanced discrete sums; conical and branched zeta values
Euler-Maclaurin 公式和 Birkhoff-Hopf 分解:离散化和量化扩展:增强离散和;
  • 批准号:
    272027528
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
  • 批准号:
    61674160
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
  • 批准号:
    2327094
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF PRFB FY23: Cross-species gene regulation of a plant-fungal symbiosis under environmental stress
NSF PRFB FY23:环境胁迫下植物-真菌共生的跨物种基因调控
  • 批准号:
    2305481
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship Award
Femtosecond X-Ray Diffraction Studies of Crystalline Matter Deforming under Extreme Loading
极端载荷下晶体物质变形的飞秒 X 射线衍射研究
  • 批准号:
    EP/X031624/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了