High-dimensional multivariate multifractal (HD-MMF) volatility models: regularized estimation,forecasting and risk management applications with realistically large portfolios of assets

高维多元多重分形 (HD-MMF) 波动率模型:具有实际大型资产组合的正则化估计、预测和风险管理应用

基本信息

项目摘要

Modelling and forecasting of volatilities and correlations of asset returns play an important role in risk management, portfolio selection and derivative pricing. Volatility co-movements between assets or asset classes also shed light on the transmission of shocks between financial markets and national economies. In the wake of the global financial crisis, understanding these mechanisms has also grown in importance for market regulators. However, recent financial crises show that current volatility models leave considerable room for improvement facing two central problems: Problem P.1: Market regulators/investors need models which can forecast returns fluctuations and cross-correlations more accurately. Problem P.2: Investors need models which can handle realistically large portfolios of assets. Currently, state-of-the-art multivariate volatility models are mostly restricted to low-dimensional settings due to computational constraints. This is unsatisfactory because, according to the Basel Accords, the modelling of uncertainty, e.g., for the purpose of Value-at-Risk reporting, is a standard requirement for the risk management of financial institutions, which typically manage large portfolios of hundreds or thousands of assets. The major goal of this project is the introduction of a new class of models, the high-dimensional multivariate multifractal (HD-MMF) volatility models, which can overcome this gap and can be used for large asset portfolios. HD-MMF models are a unified solution to problems P.1 and P.2, combining recent advances in two different areas: 1. multivariate multifractal volatility models which can capture different degrees of long-term dependence in various powers of returns and in their correlations – a property pervasively found in empirical financial data, 2. regularized estimation techniques from the area of machine learning, which can overcome the underlying computational problem and provide an avenue for efficient estimation of high-dimensional models. Our estimation approach has three key benefits: First, we account for general temporal dependency typical for time series data. Second, we model the complete covariance matrix of asset returns explicitly under the assumption that it is a sparse matrix. Third, we use for the first time non-linear moment equations for the purpose of regularized GMM estimation, which could serve as a pilot study for a large number of other applications. By the end of this project, we expect the following deliverables: • A new analytical approach for the multivariate modelling and forecasting of multifractal volatility, • Estimation procedures specifically designed for HD-MMF settings with 100 to 1000 assets, • Optimal portfolios based on our models have lower volatility compared to competing models, • We will have explored the boundary of model sizes which can be handled and the trade-off between forecast performance and computational costs.
波动性和资产收益相关性的建模和预测在风险管理、投资组合选择和衍生品定价中发挥着重要作用。资产或资产类别之间的波动性协同运动,也揭示了金融市场与国家经济之间冲击的传导。在全球金融危机之后,对市场监管机构来说,理解这些机制也变得越来越重要。然而,最近的金融危机表明,目前的波动率模型面临两个核心问题,仍有很大的改进空间:问题P.1:市场监管者/投资者需要能够更准确地预测回报波动和相互关系的模型。问题2:投资者需要能够实际处理大量资产组合的模型。目前,由于计算的限制,最先进的多变量波动模型大多局限于低维设置。这是不令人满意的,因为根据巴塞尔协议,不确定性建模,例如,为了风险价值报告的目的,是金融机构风险管理的标准要求,这些机构通常管理数百或数千个资产的大型投资组合。该项目的主要目标是引入一类新的模型,即高维多元多重分形(HD-MMF)波动率模型,该模型可以克服这一差距,并可用于大型资产组合。HD-MMF模型是问题P.1和P.2的统一解决方案,结合了两个不同领域的最新进展:多元多重分形波动率模型,可以捕捉不同程度的长期依赖于各种回报的权力和他们的相关性-在经验金融数据中普遍发现的属性,2。来自机器学习领域的正则化估计技术,它可以克服潜在的计算问题,并为高维模型的有效估计提供了一条途径。我们的估计方法有三个关键的好处:首先,我们考虑了时间序列数据的一般时间依赖性。其次,在假设资产收益为稀疏矩阵的前提下,明确地建立了资产收益的完整协方差矩阵的模型。第三,我们首次将非线性矩方程用于正则化GMM估计,这可以作为大量其他应用的先导研究。到本项目结束时,我们预计将获得以下成果:•用于多重分形波动的多变量建模和预测的新分析方法;•专为具有100至1000个资产的HD-MMF设置设计的估计程序;•基于我们模型的最佳投资组合与竞争模型相比具有更低的波动性;•我们将探索可处理的模型大小的边界以及预测性能和计算成本之间的权衡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Thomas Lux其他文献

Professor Dr. Thomas Lux的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Thomas Lux', 18)}}的其他基金

Multifraktale Modelle von Finanzrenditen: Multivariate Erweiterungen, empirische Schätzung und Anwendung im Risikomanagement
财务回报的多重分形模型:多元扩展、经验估计及其在风险管理中的应用
  • 批准号:
    85521665
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
  • 批准号:
    10662781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
  • 批准号:
    10658215
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SEMA6D-mediated breast cancer disparity, metastasis, and tumor-immune interaction
SEMA6D 介导的乳腺癌差异、转移和肿瘤免疫相互作用
  • 批准号:
    10634959
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
  • 批准号:
    10720562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neurocognitive Foundations of Morphological Processing in Children with Dyslexia
阅读障碍儿童形态处理的神经认知基础
  • 批准号:
    10538156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了