Identification of Nonlinear Local Model State Space Networks

非线性局部模型状态空间网络的辨识

基本信息

项目摘要

This project shall investigate a new approach for nonlinear system identification. It fuses ideas from the machine learning and system identification communities. The goal of this project is to develop a novel class of model structures and associated training algorithms for building data-driven nonlinear state space models. They are based on local linear model networks and will offer many benefits compared to existing approaches. The methods contribute to the demand for trustworthy artificial intelligence in industry. A training algorithm for constructing local model state space networks (LMSSNs) from data will be developed. Thereby, the focus will be on the transfer of incremental tree-construction strategies to state space modeling. Various challenges arise from the recurrency of the state vector and are addressed in this project. In order to carry out the training of LMSSNs in an effective and efficient way, new optimization schemes inspired by machine learning approaches are investigated. A suitable parameterization of the local models needs to be found by considering canonical forms, block-oriented structures, and/or regularization techniques. Hereby special care is given to the crucial issues of robustness and extrapolation behavior. Finally, the developed methods are compared to state-of-the-art alternatives on various benchmark problems. Furthermore, their practicability is tested on a number of real-world processes.
本计画将探讨非线性系统辨识之新方法。它融合了机器学习和系统识别社区的思想。本项目的目标是开发一种新型的模型结构和相关的训练算法,用于构建数据驱动的非线性状态空间模型。它们基于局部线性模型网络,与现有方法相比将提供许多好处。这些方法有助于工业中对值得信赖的人工智能的需求。 将开发一种用于从数据构建局部模型状态空间网络(LMSSNs)的训练算法。因此,重点将是增量树构造策略的状态空间建模的转移。各种挑战来自状态向量的递归,并在本项目中得到解决。为了以有效和高效的方式进行LMSSN的训练,研究了受机器学习方法启发的新的优化方案。一个合适的局部模型的参数化需要通过考虑规范形式,面向块的结构,和/或正则化技术。因此,特别注意的鲁棒性和外推行为的关键问题。最后,开发的方法进行比较,国家的最先进的替代品在各种基准问题。此外,他们的实用性进行了测试,对一些现实世界的进程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Oliver Nelles其他文献

Professor Dr.-Ing. Oliver Nelles的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Oliver Nelles', 18)}}的其他基金

Prior Knowledge for System Identification with Linear and Nonlinear FIR Models
使用线性和非线性 FIR 模型进行系统辨识的先验知识
  • 批准号:
    439767479
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Identifikation mit lokal linearen Modellen basierend auf achsenschrägen Unterteilungen des Eingangsraums
基于入口空间轴向倾斜细分的局部线性模型识别
  • 批准号:
    30594476
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Towards a new generation of smart long-span bridges with auto-detection systems for nonlinear dynamic response and local deterioration under wind effect
新一代智能大跨度桥梁,具有非线性动力响应和风效应下局部劣化自动检测系统
  • 批准号:
    DGDND-2022-05116
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Towards a new generation of smart long-span bridges with auto-detection systems for nonlinear dynamic response and local deterioration under wind effect
新一代智能大跨度桥梁,具有非线性动力响应和风效应下局部劣化自动检测系统
  • 批准号:
    RGPIN-2022-05116
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear and Non-local Models in Social and Ecological Systems
社会和生态系统中的非线性和非局部模型
  • 批准号:
    1909638
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
AF: Small: Approximate Counting, Stochastic Local Search and Nonlinear Dynamics
AF:小:近似计数、随机局部搜索和非线性动力学
  • 批准号:
    1815328
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Variational study of non-local nonlinear elliptic equations
非局部非线性椭圆方程的变分研究
  • 批准号:
    17H02855
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Local Generation of Nonlinear Internal Waves on the Continental Shelf: Beams to Modes
大陆架上非线性内波的局部生成:波束到模态
  • 批准号:
    1736698
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Small-time local reachability of nonlinear systems using computer algebra
使用计算机代数的非线性系统小时局部可达性
  • 批准号:
    496114-2016
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Anisotropic failure criterion for evaluation of local necking after nonlinear deformation history in sheet metal forming processes
用于评估板材成形过程中非线性变形历史后局部颈缩的各向异性失效准则
  • 批准号:
    280205402
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometric and analytic issues of nonlinear equations modelling non-local phenomena
非局部现象建模非线性方程的几何和解析问题
  • 批准号:
    1523088
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Local and Nonlinear Kernel Approximation
局部和非线性核逼近
  • 批准号:
    1232409
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了