Prior Knowledge for System Identification with Linear and Nonlinear FIR Models
使用线性和非线性 FIR 模型进行系统辨识的先验知识
基本信息
- 批准号:439767479
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project shall investigate a new approach to linear and nonlinear system identification. It fuses classical methods with modern kernel-based machine learning ideas. The goal of this project is the development of a class of novel system identification methods for linear and nonlinear finite impulse response models. These are extremely flexible, inherently stable, output error models which are linear in their parameters. The key challenge is to automatically control the bias/variance tradeoff in spite of the huge number of nominal parameters/dimensions.In particular, various possibilities to incorporate prior knowledge on the shape of the impulse response via the regularization penalty term (or prior in terms of the Bayesian interpretation) shall be pursued extensively. This shall allow for gray-box modeling approaches with a smooth transition between different degrees of transparency from black to white, in contrast to the classical discrete classification proposed by Ljung for various popular model structures.Subgoal 1: Improvement of the performance and interpretability of linear regularized finite impulse response models. Subgoal 2: Transfer of many features from subgoal 1 to the nonlinear world via local model networks. A key insight while trying to transfer linear FIR models to nonlinear ones naively is, that the huge number of parameters becomes a huge number of dimensions. This issue is solved via a special feature of local model networks: the separation of input spaces for the validity functions and for the local models.
本项目将研究线性和非线性系统辨识的新方法。它融合了经典方法和现代基于核的机器学习思想。本项目的目标是开发一类新的系统识别方法,用于线性和非线性有限脉冲响应模型。这些是非常灵活的,固有稳定的,输出误差模型,它们的参数是线性的。关键的挑战是自动控制偏差/方差权衡,尽管有大量的名义参数/维度。特别是,通过正则化惩罚项(或贝叶斯解释中的先验)将脉冲响应形状的先验知识纳入的各种可能性将得到广泛的研究。这将允许灰盒建模方法在从黑色到白色的不同透明度之间平滑过渡,这与Ljung为各种流行的模型结构提出的经典离散分类形成对比。子目标1:改进线性正则化有限脉冲响应模型的性能和可解释性。子目标2:通过局部模型网络将子目标1的许多特征转移到非线性世界。在试图将线性FIR模型天真地转换为非线性模型时,一个关键的见解是,大量的参数变成了大量的维度。这个问题是通过局部模型网络的一个特殊特性来解决的:有效性函数和局部模型的输入空间分离。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Oliver Nelles其他文献
Professor Dr.-Ing. Oliver Nelles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Oliver Nelles', 18)}}的其他基金
Identifikation mit lokal linearen Modellen basierend auf achsenschrägen Unterteilungen des Eingangsraums
基于入口空间轴向倾斜细分的局部线性模型识别
- 批准号:
30594476 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Identification of Nonlinear Local Model State Space Networks
非线性局部模型状态空间网络的辨识
- 批准号:
518237966 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
KUber: Knowledge Delivery System For Machine Learning At Scale
KUber:大规模机器学习的知识传递系统
- 批准号:
EP/X035085/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
- 批准号:
2345794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Co-designing equity care with Older People with Experiences of Homelessness (OPEH): exchanging knowledge, and planning system improvement
与有无家可归经历的老年人 (OPEH) 共同设计公平护理:交流知识,规划系统改进
- 批准号:
487903 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Miscellaneous Programs
CAREER: Timeliness as a Controllable Dimension via Knowledge-driven System Management
职业:通过知识驱动的系统管理将及时性作为可控维度
- 批准号:
2238476 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Construction and verification of coach support system for manufacturing sites with much personal tacit knowledge
个人隐性知识较多的制造现场教练支持系统的构建与验证
- 批准号:
23K02695 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
DISES: Co-producing knowledge to sustain pastoral socio-environmental systems: System feedbacks, future scenarios, and adaptive responses
DISES:共同生产知识以维持牧区社会环境系统:系统反馈、未来情景和适应性反应
- 批准号:
2206202 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
An AI-powered curriculum instructional hypergraph (knowledge graph) and intelligent hint system that triages student knowledge, curriculum materials and assessments to reduce attainment gaps
人工智能驱动的课程教学超图(知识图)和智能提示系统,可对学生知识、课程材料和评估进行分类,以缩小成绩差距
- 批准号:
10035378 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
From Rights to Votes: Understanding Political Knowledge and Mobilization Via Text Messaging Among System-Impacted Groups
从权利到投票:通过受系统影响的群体中的短信了解政治知识和动员
- 批准号:
2215480 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Cooperative Strategy Learning and Knowledge Evolution to Adapt to Dynamism in Unknown Cooperation and Environment in Multi-agent System
多智能体系统中适应未知合作和环境动态的合作策略学习和知识进化
- 批准号:
21KK0206 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Clients and Coercions: An ethnographic study of how knowledge and power impact the well-being of children and lawyers in the asylum system
委托人和胁迫:关于知识和权力如何影响庇护系统中儿童和律师福祉的人种学研究
- 批准号:
2727680 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship