Nonlinear dynamics in fractal structures

分形结构中的非线性动力学

基本信息

  • 批准号:
    09044048
  • 负责人:
  • 金额:
    $ 3.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for international Scientific Research
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to clarify various unique phenomena observed in network glasses, polymers, gel-aggragates taking fractal structures, in particular about the hopping conductivities due to anharmonic interaction between strongly localized modes observed at low temperatures. Glasses are different in several aspects from usual random media without internal strain and are not in thermal equilibrium. Thermal conductivities kappa(T) observed in polymers, network-forming glasses, and gelaggragates show universal behaviors such as the T^2-dependence below a few Kelvin and the plateau at around 10K.We have clarified that the plateau in kappa(T) can be explained by the existence of a mobility edge for phonons in glasses. At the high-temperature end of the plateau at around 10-30K, kappa(T) observed rise with increasing temperature T.We have shown quantitatively that the rise of kappa(T) certainly at least initially linear on I can be explained the hopping mechanism, namely, we have … More suggested the existence of an additional heat conduction channel, which can be explained by incorporating generic features of vibrational states in glasses at relevant temperatures. In addition, we have clarified in this project that the boson peak in the vicinity of 3O-50cm^<-1> observed in Raman and neutron scattering experiments for network-forming glasses has the same origin as the plateau region in thermal conductivities, In the second, we have pointed out that locally distorted potentials with large anharmonicities play a role in creating strongly localized modes in the acoustic band. Finally, we have succeeded to quantitatively explain that the large anharmonicity is the cause of the hopping transport of strongly localized modes, which leads a consistent explanation of the plateau and the subsequent monotonic increase of k above the plateau temperature. Our analysis will shed new light on the elucidation of long-standing problem on various unique and universal properties observed in fractal structures and glasses. Less
本项目的目的是阐明在具有分形结构的网络玻璃、聚合物、凝胶聚集体中观察到的各种独特现象,特别是关于在低温下观察到的强局域模之间的非谐相互作用引起的跳跃电导率。玻璃在几个方面不同于没有内部应变的通常随机介质,并且不处于热平衡。在聚合物、网络形成玻璃和凝胶中观察到的热导率kappa(T)表现出普遍的行为,如在几开尔文以下的T^2依赖性和在10 K左右的平台。我们阐明了kappa(T)的平台可以用玻璃中声子的迁移率边缘的存在来解释。在约10- 30 K的平台的高温端,观察到kappa(T)随温度T的升高而升高。我们已经定量地表明,kappa(T)的升高至少在初始时与I成线性关系,可以用跳跃机制来解释,即,我们有 ...更多信息 提出了一个额外的热传导通道的存在,这可以解释为在相关的温度下,在玻璃中的振动状态的通用功能。此外,我们还阐明了在网络形成玻璃的拉曼和中子散射实验中观察到的30 - 50 cm ~ 2附近的玻色子峰<-1>与热导率的平台区具有相同的起源。第二,我们指出具有大的非谐性的局部畸变势在产生声学带中的强局域模中起作用。最后,我们已经成功地定量解释了大的非谐性是强局域模的跳跃输运的原因,这导致了一致的解释平台和随后的单调增加的平台温度以上的k。我们的分析将阐明新的长期存在的问题,在分形结构和玻璃中观察到的各种独特和普遍的属性。少

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tsuneyoshi Nakayama: "Computing the Kubo formula for large systems" Physical Review E. 58(3). 3984-3992 (1998)
Tsuneyoshi Nakayama:“计算大型系统的久保公式”物理评论 E. 58(3)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takamichi Terao: "Vibrational characteristics of cluster-cluster aggregations" Physica B. in press. (1998)
Takamichi Terao:“簇-簇聚集的振动特性”Physica B. 正在出版。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakayama and N.Sato: "The origin of the Boson in Network-forming glasses" J.Physics : Condensed Matter. 10. L41 (1998)
T.Nakayama 和 N.Sato:“网络形成玻璃中玻色子的起源”J.Physics:Condensed Matter。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Nakayama and R.Orbach: "On the increase in thermal conductivities above the plateau region in glasses" Physica B. (in press).
T.Nakayama 和 R.Orbach:“关于玻璃中高原区域上方热导率的增加”Physica B.(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Nakayama: "The Origin of the Boson Peak in Network-forming Glasses" J. Phys. : Condensed Matter. 10.2. L41-L47 (1998)
T. Nakayama:“网络形成眼镜中玻色子峰的起源”J. Phys。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAYAMA Tsuneyoshi其他文献

NAKAYAMA Tsuneyoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAYAMA Tsuneyoshi', 18)}}的其他基金

Origin and mechanisms emerging glass-like properties in local-symmetry broken materials
局部对称破碎材料中出现类玻璃特性的起源和机制
  • 批准号:
    22540404
  • 财政年份:
    2010
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the formation process of fractal structures with large-scale hierarchal systems
大规模层级系统分形结构形成过程研究
  • 批准号:
    19360042
  • 财政年份:
    2007
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Formation of fractal structures and the development of its simulation algorithms
分形结构的形成及其模拟算法的发展
  • 批准号:
    16360044
  • 财政年份:
    2004
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Fast Algorithm for Dynamic Correlation Functions
动态相关函数快速算法的开发
  • 批准号:
    10650061
  • 财政年份:
    1998
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Light Localization and Nonlinearity in Aperiodic Waveguids
非周期波导中的光定位和非线性
  • 批准号:
    06640494
  • 财政年份:
    1994
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Development of Algorithm for Eigenvalue Analysis of Very Large Matrices
超大矩阵特征值分析算法的开发
  • 批准号:
    05555026
  • 财政年份:
    1993
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Dynamics of Fractal Structures
分形结构动力学
  • 批准号:
    03044012
  • 财政年份:
    1991
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Dynamical properties of large-scale fractal networks
大规模分形网络的动力学特性
  • 批准号:
    02452044
  • 财政年份:
    1990
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Universality and mechanism of magnetic boson peak in spin glasses
自旋玻璃中磁玻色子峰的普遍性和机制
  • 批准号:
    21H01045
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Observation of phase-transition dynamics of amorphous oxide by Boson peak
通过玻色子峰观察非晶氧化物的相变动力学
  • 批准号:
    22760505
  • 财政年份:
    2010
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了