Implementation and Analysis of Pulse Propagating Networks
脉冲传播网络的实现与分析
基本信息
- 批准号:09044183
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent physiological and mathematical studies suggest that the neuron in cortex uses fine time structure of asynchronously incoming excitatoiy action potentials to achieve sophisticated information processing in the brain. Such a neuron functions as a coincident detector among spatio-temporal input pule trains. Continuous variables and time are important in the spatio- temporal network with coincident detector neurons, because real-number processing is possible with them. The real-number processing is very powerful but cannot be realized by the ordinary digital computer.In this research, the spatio-temporal processing network is implemented using analog integrated circuit technology where continuous time and variables such as voltage and current are available, First of all, an asynchronous pulse neuron model that is the core element of the asynchronous pulse propagating network is proposed. The response characteristics of the single neuron and neural network composed of numbers of neurons are investigated. As the results, chaotic responses are observed from single neuron, furthermore, dynamical assembly is organized in the network. The dynamical assembly is one candidate of the information coding in the Spatio- temporal processing. Secondly, analog circuits for the model neuron, the synapse and the axon are proposed. The delay time of the propagating pulses in the axon circuits can be controlled continuously. Moreover, weight of the synaptic circuit can be altered digitally. Finally, the proposed circuits are fabricated using 1.2mum CMOS semiconductor technology. Characteritics of the circuits are measured. As a consequence, chaotic responses are confirmed from the chip. Furthermore, pulse delay in the axon circuit is also observed. The possibility of the real-number processing using asynchronous pulse propagating network is shown through the IC implementation
最近的生理学和数学研究表明,大脑皮层神经元利用非同步传入的兴奋性动作电位的精细时间结构在大脑中实现复杂的信息处理。这种神经元起到时空输入脉冲序列之间的重合检测器的作用。在具有重合检测神经元的时空网络中,连续变量和时间是重要的,因为它们可以进行实数处理。针对传统数字计算机难以实现实数处理的问题,采用模拟集成电路技术实现了具有连续时间和电压、电流等变量的时空处理网络。首先,提出了一种异步脉冲传播网络的核心单元--异步脉冲神经元模型。研究了单个神经元和由多个神经元组成的神经网络的响应特性。结果表明,网络中存在单个神经元的混沌响应,并且网络中存在动态组装。动态拼接是时空处理中信息编码的一种候选方法。其次,提出了模型神经元、突触和轴突的模拟电路。轴突电路中传播脉冲的延迟时间可以连续控制。此外,突触回路的重量可以通过数字方式改变。最后,采用1.2微米的半导体工艺制作了所提出的电路。对电路的特性进行了测量。因此,芯片确认了混沌响应。此外,还观察到轴突电路中的脉冲延迟。通过集成电路的实现,说明了利用异步脉冲传播网络进行实数处理的可能性
项目成果
期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Hangata, Y.Horio and K.Aihara: "Asynchronous pulse neural network model for VLSI implementation" Tech.Rep.IEICE. NLP97-530. 29-35 (1998)
M.Hangata、Y.Horio 和 K.Aihara:“用于 VLSI 实现的异步脉冲神经网络模型”Tech.Rep.IEICE。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Hanagata and Y.Horio: "An asynchronous pulse neural network model with finite pulse width for VLSI implementation" Proc.Int.Conf.on Neural Information Processing and Intelligent Information Systems. 1. 26-29 (1997)
M.Hanagata 和 Y.Horio:“用于 VLSI 实现的具有有限脉冲宽度的异步脉冲神经网络模型”Proc.Int.Conf.on 神经信息处理和智能信息系统。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Hanagata, Y.Horio and K.Aihara: "Asynchronous pulse neural network model for VLSI implementation" Trans. on Fundamentals, IEICE. E81A, 9. 1853-1859 (1998)
M.Hanagata、Y.Horio 和 K.Aihara:“用于 VLSI 实现的异步脉冲神经网络模型” Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Hanagata and Y.Horio: "A modified asynchronous pulse neural network model for VLSI implementation" Proc.Int.Symp.on Nonlinear Theory and Its Applications. 2. 849-852 (1997)
M.Hanagata 和 Y.Horio:“用于 VLSI 实现的改进的异步脉冲神经网络模型”Proc.Int.Symp.on 非线性理论及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Yasuda M.Hanagata R.Kasahara and Y.Horio: "Analog circuit implementation of asynchronous pulse neural network model" Proc.of Int Symp.on Nonlinear Theory and Its Applications. 2. 853-856 (1997)
K.Yasuda M.Hanagata R.Kasahara 和 Y.Horio:“异步脉冲神经网络模型的模拟电路实现”Proc.of Int Symp.on 非线性理论及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HORIO Yoshihiko其他文献
HORIO Yoshihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HORIO Yoshihiko', 18)}}的其他基金
Real Number Computation through Physical Coupled-Chaotic Systems
通过物理耦合混沌系统进行实数计算
- 批准号:
20300085 - 财政年份:2008
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Implementation and Analysis of Pulse Propagating Networks
脉冲传播网络的实现与分析
- 批准号:
09650081 - 财政年份:1997
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis and application of large chaotic neural networks
大型混沌神经网络分析与应用
- 批准号:
08044171 - 财政年份:1996
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
EU-Funded
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
- 批准号:
2337646 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
Organic optoelectronic neural networks
有机光电神经网络
- 批准号:
EP/Y020596/1 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Research Grant