Study on Inductive Learning Based on Positive Examples
基于实证的归纳学习研究
基本信息
- 批准号:09680372
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research is in investigating realizability of machine learning, by studying inductive inference as a theoretical model of learning from examples. In general, examples using in learning are categorized in positive ones and negative ones. In language (or grammar) learning, positive examples are corresponding to (grammatically) correct sentences. Data obtained from experiments can be considered as positive examples of a certain property, when they are concerned with the property. In this research, we have considered theoretical limits of inductive learning based on positive examples and investigated efficient learning algorithms from the viewpoint of practical applications.A pattern is a string consisting of constant symbols and variables. The language or a pattern is the set of constant strings obtained by substituting nonempty constant strings for variables in the pattern. For any fixed k, the class of unions of at most k pattern languages is already shown to be inferable from positive data.We apply a learning algorithm for pattern languages to discover a motif from amino-acid sequences. From only positive examples with the help of an alphabet indexing, the algorithm successfully finds sets or patterns, that can be considered as motifs.Elementary formal systems are logic programs over patterns, and therefore natural extension of patterns. We employ elementary formal systems as a unifying framework for language learning. Within this framework, we have shown various results, such as, model inference style language learning, and the existence or rich classes of languages inferable from positive data.
本研究的目的是调查机器学习的可实现性,通过研究归纳推理作为从示例中学习的理论模型。一般来说,学习中使用的例子分为积极的和消极的。在语言(或语法)学习中,积极的例子对应于(语法上)正确的句子。从实验中获得的数据可以被认为是某种性质的正例,当它们与该性质有关时。本文研究了基于正例的归纳学习的理论局限性,并从实际应用的角度研究了有效的学习算法。模式是由常量符号和变量组成的字符串。语言或模式是通过用非空常量字符串替换模式中的变量而获得的常量字符串的集合。对于任何固定的k,最多k个模式语言的联合类已经被证明是从正数据推断的。我们应用模式语言的学习算法从氨基酸序列中发现一个模体。该算法仅从正例中通过字母索引成功地找到可视为模体的集合或模式,初等形式系统是模式上的逻辑程序,是模式的自然扩展。我们采用初等形式系统作为语言学习的统一框架。在这个框架内,我们已经展示了各种结果,例如,模型推理风格的语言学习,以及从正面数据推断的语言的存在或丰富的类别。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takashi Shinohara: "Approximate retrieval of high-dimensional data by spatial indexing"Proc.1st International Conference on Discovery Science,Lecture Notes in Artificial Intelligence 1532,Springer-Verlag. LNAI-1532. 141-149 (1998)
Takashi Shinohara:“通过空间索引近似检索高维数据”Proc.第一届国际发现科学会议,人工智能讲义 1532,Springer-Verlag。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Shinohara, J.An, H.Ishizaka: "Approximate retrieval of high-dimensional data by spatial indexing"Proc. 1st International Conference on Discovery Science, Lecture Notes in Artificial Intelligence 1532, Springer-Verlag. 141-149 (1998)
T.Shinohara、J.An、H.Ishizaka:“通过空间索引近似检索高维数据”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Ishizaka: "Finding tree patterns consistent with positive and negative examples using queries"Ann.Math.Artif.Intell.. Vol.2,No.1-2. 101-115 (1998)
Hiroki Ishizaka:“使用查询查找与正面和负面示例一致的树模式”Ann.Math.Artif.Intell.. Vol.2,No.1-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroki Arimura: "Learning unions of tree patterns using queries" Theoretical Computer Science(Netherlands). 185. 47-62 (1997)
Hiroki Arimura:“使用查询学习树模式的并集”理论计算机科学(荷兰)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeshi Shinohara: "Approximate retrieval of high-dimensional data by spatial indexing"Proc. of 1st International Conference on Discovery Science, Lecture Notes in Artificial Intelligence 1532, Springer-Verlag. LNAI-1532. 141-149 (1998)
Takeshi Shinohara:“通过空间索引近似检索高维数据”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHINOHARA Takeshi其他文献
SHINOHARA Takeshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHINOHARA Takeshi', 18)}}的其他基金
Study on Contents Based Fast Similarity Search of High-Dimensional Multimedia Data and Its Application
基于内容的高维多媒体数据快速相似度搜索及其应用研究
- 批准号:
23500126 - 财政年份:2011
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconstruction of Distributed Leadership Theory based on comparative studies on Educational Governance in Japan and America
基于日美教育治理比较研究的分布式领导理论重构
- 批准号:
22830031 - 财政年份:2010
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on Pattern Inference based on Positive Examples and its Application to Knowledge Discovery
基于正例的模式推理及其在知识发现中的应用研究
- 批准号:
19500125 - 财政年份:2007
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Pattern Inference from Positive Data
实证数据模式推断研究
- 批准号:
12680391 - 财政年份:2000
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Inductive Learning Based on Positive Examples
基于实证的归纳学习研究
- 批准号:
07680406 - 财政年份:1995
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Speedup of Text Database by Data Compression
通过数据压缩加速文本数据库
- 批准号:
07558159 - 财政年份:1995
- 资助金额:
$ 1.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Collaborative R&D
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Feasibility Studies
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Linkage Projects
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Research Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Research Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Continuing Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant