Mechanisms for fatigue crack growth in meso/micro and nano specimens - crack initiation and short crack growth under geometrical and mechanical constraints
细观/微米和纳米样品中疲劳裂纹扩展的机制 - 几何和机械约束下的裂纹萌生和短裂纹扩展
基本信息
- 批准号:521371248
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wider research context / theoretical framework: Fracture mechanical concepts are known since many decades and become more and more important in many fields of applications to optimise the efficiency of materials in parts and components, which is essential for e.g. lightweight constructions to save resources and energy. Size effects are an intrinsic and commonly known problem in fracture mechanics even at the macroscopic scale which leads to size requirements even for the samples defined in the according test-standards. The situation becomes even more complicated when complex specimen geometries are used e.g. for testing of MEMS and/or comparably large plastic and process zones are present in front of the crack tip which is typically the case in small-scale fracture testing. In addition, a complex microstructure, found e.g. in multilayers, can strongly influence crack initiation and propagation through mechanical and microstructural constraints. These effects and challenges have not been addressed in past in detail and will be the focus of the current proposal. Hypotheses/research questions /objectives: How must specimen size, boundary conditions (constraints), material behaviour and inhomogeneities be considered regarding the applicability of the fracture mechanical concepts for small-scale specimens and are there necessary pre-sets for testing of micron-sized specimens (e.g. fatigue pre-cracks)? Approach/methods: To analyse short crack growth under mechanical constraints we will not only vary the specimen size, but also design tailored multilayer structures with varying grain sizes via electrodeposition. We propose a scale-bridging investigation. Meso to micron-sized samples are tested at the Saarland University, Montanuniversität Leoben provides testing of nano and micro samples. We will vary the sample size, the layer system and the grain size regarding quasi-static and LCF physically short cracks. Combining our experience in micro and nano-mechanics we will achieve a characterization of the crack via the displacements and strain fields in the plastic zone. Level of originality / innovation: Up to now, work has mostly focussed on understanding the origin of static size effects, but there is no detailed study of size dependent evolution of cyclic plasticity and fracture. Furthermore, knowledge of the underlying mechanisms arising from microstructural and mechanical constraints is crucially missing. The aim of this project is to gain an improved understanding of the driving force of physically short cracks, both quasi-statically and in the low cycle fatigue regime (LCF), under geometrical, microstructural and mechanical boundary conditions and constraints to develop a comprehensive model of fatigue and fracture in inhomogeneous materials in micron-sized dimensions.
更广泛的研究背景/理论框架:断裂力学概念几十年来一直为人所知,在优化零部件材料效率的许多应用领域变得越来越重要,这对于轻量化结构节省资源和能源至关重要。尺寸效应是断裂力学中一个固有的、众所周知的问题,即使是在宏观尺度上,也会导致对试验标准中定义的样品的尺寸要求。当使用复杂的试样几何形状时,情况变得更加复杂,例如用于MEMS测试和/或在裂纹尖端前存在相当大的塑性和工艺区域,这是小规模断裂测试的典型情况。此外,复杂的微观结构,例如在多层材料中,可以通过力学和微观结构约束强烈地影响裂纹的萌生和扩展。这些影响和挑战在过去没有得到详细的解决,将是当前提案的重点。假设/研究问题/目标:如何考虑试样尺寸、边界条件(约束)、材料行为和非均质性对小规模试样断裂力学概念的适用性,以及是否有必要的预先设定来测试微米尺寸的试样(例如疲劳预裂纹)?途径/方法:为了分析在力学约束下的短裂纹扩展,我们不仅要改变试样尺寸,还要通过电沉积设计不同晶粒尺寸的定制多层结构。我们建议进行规模桥接调查。中至微米尺寸的样品在萨尔大学进行测试,Montanuniversität Leoben提供纳米和微观样品的测试。我们将改变准静态和LCF物理短裂纹的样本量、层系和晶粒尺寸。结合我们在微观和纳米力学方面的经验,我们将通过塑性区的位移和应变场来实现裂纹的表征。独创性/创新水平:到目前为止,工作主要集中在了解静态尺寸效应的起源,但没有详细研究尺寸依赖于循环塑性和断裂的演化。此外,由于微观结构和机械约束而产生的潜在机制的知识是至关重要的缺失。该项目的目的是为了更好地理解在几何、微观结构和力学边界条件和约束下,准静态和低周疲劳状态(LCF)下物理短裂纹的驱动力,以建立微米尺寸非均匀材料的疲劳和断裂综合模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Motz其他文献
Professor Dr. Christian Motz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Motz', 18)}}的其他基金
Study of the mechanisms of slip transfer at grain boundaries in fcc bulk material by the combination of in situ atomic force microscopy and orientation gradient evaluation by HR-EBSD
结合原位原子力显微镜和 HR-EBSD 取向梯度评估研究面心立方块体材料晶界滑移传递机制
- 批准号:
411096820 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Fatigue damage evolution in micro samples: the influence of specimen size and grain boundaries
微样品中的疲劳损伤演化:样品尺寸和晶界的影响
- 批准号:
270913401 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Integrated solution for lokal, electron channeling based stress and strain measurement in the scanning electron microscope (εpsilator.X3)
扫描电子显微镜中基于电子沟道的应力和应变测量的集成解决方案 (εpsilator.X3)
- 批准号:
445818037 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
The initiation and arrest mechanisms of small internal cracks in very high cycles fatigue regime in titanium alloys
钛合金高周疲劳状态下细小内部裂纹的萌生和阻止机制
- 批准号:
22KJ0059 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Acceleration and retardation behavior of creep-fatigue crack propagation in Ni-base superalloys: Mechanisms and quantitative modelling
镍基高温合金中蠕变疲劳裂纹扩展的加速和延迟行为:机制和定量建模
- 批准号:
23K03600 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive understanding of the mechanisms of hydrogen-assisted fatigue crack propagation in BCC steels based on hydrogen-dislocation interactions
基于氢-位错相互作用全面理解BCC钢氢辅助疲劳裂纹扩展机制
- 批准号:
19K23503 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Deformation mechanisms and fatigue crack initiation in single crystal nickel superalloys
单晶镍高温合金的变形机制和疲劳裂纹萌生
- 批准号:
2275727 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Data rich imaging approaches assessing early fatigue crack growth mechanisms in Ni base superalloys
数据丰富的成像方法评估镍基高温合金的早期疲劳裂纹扩展机制
- 批准号:
1939229 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Fundamental Investigation of Fatigue Crack Growth Mechanisms in Microstructurally-Stable Nanocrystalline Alloys
合作研究:微观结构稳定的纳米晶合金疲劳裂纹扩展机制的基础研究
- 批准号:
1663522 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Data rich imaging approaches assessing early fatigue crack growth mechanisms in Ni base superalloys
数据丰富的成像方法评估镍基高温合金的早期疲劳裂纹扩展机制
- 批准号:
2629625 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Fundamental Investigation of Fatigue Crack Growth Mechanisms in Microstructurally-Stable Nanocrystalline Alloys
合作研究:微观结构稳定的纳米晶合金疲劳裂纹扩展机制的基础研究
- 批准号:
1663287 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Creep and Creep-Fatigue Crack Growth Mechanisms in Alloy 709
合金 709 中的蠕变和蠕变疲劳裂纹扩展机制
- 批准号:
EP/N016351/1 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grant
Fatigue life reduction of steels in pressurized hydrogen as a consequence of changes in short crack propagation mechanisms
由于短裂纹扩展机制的变化,钢在加压氢气中的疲劳寿命缩短
- 批准号:
251753485 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants