Collaborative Research: Fundamental Investigation of Fatigue Crack Growth Mechanisms in Microstructurally-Stable Nanocrystalline Alloys

合作研究:微观结构稳定的纳米晶合金疲劳裂纹扩展机制的基础研究

基本信息

  • 批准号:
    1663522
  • 负责人:
  • 金额:
    $ 24.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Metallic materials with a crystallite size of sizes less than 100 nanometers (known as nanocrystalline alloys) have enhanced strength and toughness compared to those with much larger crystal sizes. These crystals tend to grow rapidly, however, when exposed to cyclic external forces, limiting their practical utility as load-bearing structures. This award supports fundamental research to enable enhanced stability in nanocrystalline alloys and to uncover their behavior under cyclic loading conditions, by applying innovative alloy design and synthesis methods. Further, this project will develop a predictive framework which will identify suitable compositions of novel nanocrystalline alloys that will meet or exceed the performance of conventional alloys under cyclic loads, including rotating machinery and engine components critical to the transportation, defense and energy sectors. This interdisciplinary research will provide opportunities for students from underrepresented minority groups, women, and persons with disabilities, and will directly raise public interest in science and engineering through creative outreach initiatives.Metals with a mean grain size below 100 nm have inspired much research interest owing to their superior mechanical properties as compared to course-grained materials. However, despite the potential applicability of nanocrystalline alloys for load-bearing structures, very few studies have addressed the fundamental microstructural evolution under fatigue loads, specifically, grain size effects on fatigue processes. The critical gap in knowledge has stemmed from microstructural instability, i.e., grain growth and texture evolution observed during cyclic deformation. Motivated by this, the goals of this project are: (1) implementation of selective segregation of nanoclusters to lower the thermodynamic and kinetic driving forces for grain growth, and as a result, a clear understanding of the true microstructural grain size effects on salient fatigue growth mechanisms can be unraveled; and (2) to exploit the subsequent knowledge to reconcile key theories and hypotheses pertaining to fatigue crack growth behavior of nanocrystalline metals. The fatigue crack growth mechanisms as a function of grain size quantified in this project have broad scientific ramifications as this knowledge is highly relevant for designing and synthesizing nanocrystalline alloys with optimal microstructures, and for accurate predictive simulations.
与具有大得多的晶体尺寸的金属材料相比,具有小于100纳米的晶体尺寸的金属材料(称为纳米晶体合金)具有增强的强度和韧性。然而,当暴露于循环外力时,这些晶体倾向于快速生长,限制了它们作为承重结构的实际用途。该奖项支持基础研究,通过应用创新的合金设计和合成方法,提高纳米晶合金的稳定性,并揭示其在循环载荷条件下的行为。此外,该项目将开发一个预测框架,该框架将确定新型纳米晶合金的合适成分,这些合金将在循环载荷下达到或超过传统合金的性能,包括对运输,国防和能源部门至关重要的旋转机械和发动机部件。这一跨学科研究将为少数民族学生、妇女和残疾人提供机会,并将通过创造性的外联活动直接提高公众对科学和工程的兴趣。平均晶粒尺寸低于100 nm的金属由于其上级机械性能而激发了许多研究兴趣。然而,尽管纳米晶合金的承载结构的潜在适用性,很少有研究已经解决了疲劳载荷下的基本微观结构演变,特别是晶粒尺寸对疲劳过程的影响。知识方面的关键差距源于微观结构的不稳定性,即,在循环变形过程中观察到的晶粒生长和织构演变。基于此,本项目的目标是:(1)实现纳米团簇的选择性偏析,以降低晶粒生长的热力学和动力学驱动力,从而可以清楚地了解真实的微观组织晶粒尺寸对显著疲劳生长机制的影响;(2)利用后续知识来协调与纳米晶金属疲劳裂纹扩展行为有关的关键理论和假设。在该项目中量化的作为晶粒尺寸的函数的疲劳裂纹扩展机制具有广泛的科学分支,因为这些知识对于设计和合成具有最佳微观结构的纳米晶合金以及精确的预测模拟具有高度相关性。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unraveling the Role of Interfaces on the Spall Failure of Cu/Ta Multilayered Systems
  • DOI:
    10.1038/s41598-019-57048-9
  • 发表时间:
    2020-01-14
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chen, Jie;Mathaudhu, Suveen N.;Dongare, Avinash M.
  • 通讯作者:
    Dongare, Avinash M.
Correlations between dislocation density evolution and spall strengths of Cu/Ta multilayered systems at the atomic scales: The role of spacing of KS interfaces
  • DOI:
    10.1016/j.mtla.2018.100192
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Chen, J.;Mathaudhu, S. N.;Dongare, A. M.
  • 通讯作者:
    Dongare, A. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suveen Mathaudhu其他文献

Strain and strain rate in friction extrusion
  • DOI:
    10.1016/j.jmrt.2022.07.116
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiao Li;Md Reza-E-Rabby;Anthony Guzman;Glenn Grant;Suveen Mathaudhu;Micah Hinton;Anthony Reynolds
  • 通讯作者:
    Anthony Reynolds
Nanotwin assisted reversible formation of low angle grain boundary upon reciprocating shear load
纳米孪晶辅助可逆形成低角度晶界在往复剪切载荷下
  • DOI:
    10.1016/j.actamat.2022.117850
  • 发表时间:
    2022-05-15
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Shuang Li;Nanjun Chen;Aashish Rohatgi;Yulan Li;Cynthia A. Powell;Suveen Mathaudhu;Arun Devaraj;Shenyang Hu;Chongmin Wang
  • 通讯作者:
    Chongmin Wang
Grain Size Effects and Mechanisms for Increased Antimicrobial Efficiency in Nanocrystalline Bulk Copper
纳米晶块状铜的晶粒尺寸效应和提高抗菌效率的机制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evander Ramos;Isabella Bagdasarian;Yaqiong Li;Masuda Takahiro;Yoichi Takizawa;P. Alexander Greaney;Zenji Horita;Joshua Morgan;Suveen Mathaudhu
  • 通讯作者:
    Suveen Mathaudhu

Suveen Mathaudhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suveen Mathaudhu', 18)}}的其他基金

Conference: 2023 Physical Metallurgy Gordon Research Conference and Seminar
会议:2023物理冶金戈登研究会议暨研讨会
  • 批准号:
    2326798
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
CAREER: Extreme Toughening of HCP Metallic Alloys via Nanospaced Stacking Faults
职业:通过纳米层错实现 HCP 金属合金的极度增韧
  • 批准号:
    1554632
  • 财政年份:
    2016
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
Collaborative Research: A Theoretical and Experimental Study of Mechanical Properties in Ultrafine-Grained Alloys
合作研究:超细晶合金力学性能的理论与实验研究
  • 批准号:
    1463679
  • 财政年份:
    2015
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245405
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317194
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245406
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 24.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了